目录

  • 1 绪论
    • 1.1 课前学习要求
    • 1.2 什么是统计学
    • 1.3 为什么要学习统计学
    • 1.4 描述性统计和推断性统计
    • 1.5 无处不在的统计学
    • 1.6 第一章课后作业
  • 2 数据产生
    • 2.1 课前学习要求
    • 2.2 基本概念
    • 2.3 数据来源
    • 2.4 随机性和抽样误差
    • 2.5 数据类型
    • 2.6 数据还能“撒谎”?
    • 2.7 第二章课后作业
    • 2.8 统计报告案例阅读
  • 3 数据展示
    • 3.1 课前学习要求
    • 3.2 数据预处理
    • 3.3 数据整理
    • 3.4 数据展示
    • 3.5 统计图表的使用
    • 3.6 数据可视化
    • 3.7 第三章课后作业
  • 4 数据描述
    • 4.1 课前学习要求
    • 4.2 数据分布特征描述
    • 4.3 相关和因果
    • 4.4 第四章课后作业
  • 5 概率论
    • 5.1 课前学习要求
    • 5.2 什么是概率
    • 5.3 离散型随机变量
    • 5.4 连续性随机变量
    • 5.5 中心极限定理的百年
  • 6 统计推断
    • 6.1 课前学习要求
    • 6.2 抽样分布
    • 6.3 大数定律和中心极限定理
    • 6.4 数值型数据统计推断
    • 6.5 假设检验
    • 6.6 品质数据统计推断
  • 7 统计指数
    • 7.1 课前学习要求
    • 7.2 基本概念
    • 7.3 总指数
    • 7.4 指数体系
    • 7.5 常用经济指数
课前学习要求

2.1 课前学习要求(在上课前必须完成)

  1. 阅读本章教材内容;

  2. 观看数字资源:

    1. 《个体、样本、总体和变量是什么》

    2. 《数据从哪里来(上)》、《数据从哪里来(下)》

    3. 《获取的数据还有误差》

    4. 《数据还有不同之处》

  3. 思考并回答:怎样减小随机误差?如何识别数据撒谎?归纳总体和个体的区别与联系?