数据可视化

彭超华

目录

  • 1 数据可视化课程导学
    • 1.1 课程教学大纲
    • 1.2 课程教学进度安排(教学日历)
    • 1.3 课程教学方案设计(教案)
    • 1.4 课程反思
    • 1.5 课堂反思
    • 1.6 课程教学目标
    • 1.7 课程考核方式
    • 1.8 课程推荐书目及资源
    • 1.9 课前软件安装准备:Anaconda3
  • 2 数据可视化概述
    • 2.1 引言(课程介绍、大纲介绍)
    • 2.2 数据可视化概述
    • 2.3 Jupyter Notebook的安装和使用
    • 2.4 本章实训:绘制词云图
  • 3 python程序设计基础(自学)
    • 3.1 python语言基础语法
    • 3.2 python的内置数据类型
    • 3.3 python的自定义函数
  • 4 Numpy数值基础
    • 4.1 Numpy多维数组、数组读写
    • 4.2 数组的索引、切片和运算
    • 4.3 NumPy中的数据统计与分析
  • 5 Pandas统计分析基础
    • 5.1 Pandas 数据结构的创建和文件读取
    • 5.2 Pandas数据预处理
    • 5.3 Pandas 查询与编辑
    • 5.4 数据分组与透视
  • 6 Matplotlib数据可视化
    • 6.1 Matplotlib绘图基础、Pyplot动态rc参数、折线图
      • 6.1.1 jupyter课件
    • 6.2 常用绘图:柱形图
      • 6.2.1 jupyter课件
    • 6.3 常用绘图:饼图、散点图、直方图
      • 6.3.1 jupyter课件
    • 6.4 常见绘图:箱线图、雷达图和表格
      • 6.4.1 jupyter课件
    • 6.5 Pandas可视化
    • 6.6 Pandas可视化实训
    • 6.7 Matplotlib可视化实训
  • 7 Seaborn可视化
    • 7.1 Seaborn简介及风格设置
    • 7.2 常用绘图:关系类图
    • 7.3 常用绘图:分类图
    • 7.4 常用绘图:分布图、回归图和矩阵图
    • 7.5 Seaborn实训
  • 8 Pyecharts可视化(选学)
    • 8.1 Pyecharts基本使用方法
    • 8.2 Pyecharts常用图表
    • 8.3 Pyecharts实训
  • 9 数据可视化综合实训
    • 9.1 数据可视化综合实训
  • 10 课程复习与总结(课程设计)
    • 10.1 课程复习与总结(课程设计)
课程教学目标

(一)本课程目标

数据可视化的目的,是希望借助图像可读性搞,易用性强等特性,来帮助我们的业务人员更好的理解数据背后所蕴含的业务含义,更加直观清晰。可视化是数据分析的核心理念。

本课程的主要目的是培养学生的信息数据可视化处理能力。通过本课程的教学,使学生掌握数据可视化的一般原理和处理方法,能使用数据可视化工具对数据进行可视化处理。

(二)本课程要求

本课程要求学生应完成和争取完成的各项学习任务,且与课程目标对应统一。

通过学习本课程后,使学生具备以下能力:

(1)通过课程学习使学生了解数据可视化基本概念和数据可视化原理;

(2)熟悉大数据可视化方法;

(3)掌握常用的可视化工具和软件的使用;

(4)掌握基本的数据可视化编程;

能够对实例中的商务数据进行可视化产品呈现。