目录

  • 1 污水水质
    • 1.1 污水水质
    • 1.2 污水出路
  • 2 污水的物理处理
    • 2.1 格栅和筛网
    • 2.2 沉淀的基本理论
    • 2.3 沉砂池
    • 2.4 沉淀池
    • 2.5 隔油池
    • 2.6 气浮池
  • 3 污水生物处理的基本原理
    • 3.1 污水生物处理的基本概念
    • 3.2 污水生物处理的基本原理
    • 3.3 生物脱氮除磷基本原理
  • 4 活性污泥法
    • 4.1 活性污泥的基本概念和流程
    • 4.2 活性污泥法的运行方式
    • 4.3 气体传递原理和曝气池
    • 4.4 污水的生物脱氮除磷工艺
    • 4.5 活性污泥法的数学模型基础
    • 4.6 活性污泥法系统的设计与计算
    • 4.7 污泥膨胀和如何控制
  • 5 生物膜法
    • 5.1 生物膜法基本原理
    • 5.2 生物滤池和生物转盘
    • 5.3 生物接触氧化和生物流化床
  • 6 稳定塘和污水的土地处理
    • 6.1 稳定塘
    • 6.2 人工湿地
  • 7 污水的厌氧生物处理
    • 7.1 厌氧生物处理的基本原理
    • 7.2 污水的厌氧生物处理方法
  • 8 污水的化学与物理化学处理
    • 8.1 化学混凝法
    • 8.2 中和与化学沉淀法
    • 8.3 氧化还原法
    • 8.4 吸附法
    • 8.5 离子交换法
    • 8.6 膜分离法
  • 9 污泥的处理和处置
    • 9.1 污泥的处理
    • 9.2 污泥处理方法
  • 10 重金属废水的处理
    • 10.1 工业废水概述
    • 10.2 重金属废水处理工程技术
  • 11 污水处理厂的设计
    • 11.1 污水处理厂设计
生物脱氮除磷基本原理

                                                 

                                   氮的去除

废水中的氮以有机氮、氨氮、亚硝酸氮和硝酸氮四种形式存在。

TKN=N有机NH3-N

TN= N有机NH3-NNO2NNO3NTKNNOx--N

在生活污水中,主要含有有机氮和氨态氮,它们均来源于人们食物中的蛋白质。新鲜生活污水含氮中有机氮约占总氮的60%,氨氮约占40%。当污水中的有机物被生物降解氧化时,其中的有机氮被转化为氨氮。经活性污泥法处理的污水有相当数量的氨氮排入水体,可导致水体富营养化。水体若为水源,将增加给水处理的难度和成本。因此二级处理的出水有时需进行脱氮处理。脱氮的方法有化学法和生物法两大类,现分别加以论述。

1. 化学法除氮

常用于去除氨氮,有吹脱法、折点加氯法和离子交换法。主要用于工厂内部的治理,对于城市污水处理厂很少采用。

1)吹脱法

2)折点加氯法

3)离子交换法

2. 生物法脱氮

(1) 生物脱氮机理  

生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2NxO气体的过程。其中包括硝化和反硝化两个反应过程。

硝化反应是在好氧条件下,将NH4+转化为NO2-NO3-的过程。此作用是由亚硝酸菌和硝酸菌两种菌共同完成的。这两种菌属于化能自养型微生物。

其反应和总反应式见P254:   

硝化细菌是化能自养菌,生长率低,对环境条件变化较为敏感。温度,溶解氧,污泥龄,pH,有机负荷等都会对它产生影响。

硝化反应的适宜温度为20℃30℃。低于15℃时,反应速度迅速下降,5℃时反应几乎完全停止。

由于硝化菌是自养菌,若水中BOD5值过高,将有助于异氧菌的迅速增殖,微生物中的硝化菌的比例下降。表18—1中列出了BOD5TKN与硝化菌所占比例的关系。

硝化菌的生长世代周期较长,为了保证硝化作用的进行,泥龄应取大于硝化菌最小世代时间两倍以上。

硝化反应对溶解氧有较高的要求,处理系统中的溶解氧量最好保持在2mgL以上。另外,在硝化反应过程中,有H+释放出来,使pH值下降。硝化菌受pH值的影响很敏感,为了保持适宜的pH78,应在废水中保持足够的碱度,以调节pH值的变化。1g氨态氮(N)完全硝化,需碱度(CaCO3) 7.1 g

反硝化反应是指在无氧条件下,反硝化菌将硝酸盐氮(NO3-)和亚硝酸盐氮(NO2-)还原为氮气的过程。

反应和总反应式见P255 

    反硝化菌属异养型兼性厌氧菌,在有氧存在时,它会以O2为电子受体进行好氧呼吸;在无氧而有NO3-NO2-存在时,则以NO3-NO2-为电子受体,以有机碳为电子供体和营养源进行反硝化反应。

    在反硝化菌代谢活动的同时,伴随着反硝化菌的生长繁殖,即菌体合成过程,其反应如下:

3N03-+14CH30HC023H+→ 3C5H7O2N19H2O

    式中C5H7O2N为反硝化微生物的化学组成。反硝化还原和微生物合成的总反应式见P255

    从以上的过程可知,约96%的NO3-N经异化过程还原,4%经同化过程合成微生物。

在反硝化反应中,最大的问题就是污水中可用于反硝化的有机碳的多少及其可生化程度。当污水中BOD5TKN>35时,可认为碳源充足。不同的有机碳将导致反硝化速率的不同。碳源按其来源可分为三类:外加碳源,多采用甲醇,因为甲醇被分解后的产物为CO2H2O,不产生其它难降解的中间产物,但其费用较高;原水中含有的有机碳;内源呼吸碳源——细菌体内的原生物质及其贮存的有机物。

    反硝化反应的适宜pH值为6.5—7.5pH值高于8或低于6时,反硝化速率将迅速下降。

    反硝化反应的温度范围较宽,在5℃-40℃范围内都可以进行。但温度低于15℃时,反硝化速率明显下降。


                                                               磷的去除

        城市污水中的磷主要有三个来源:粪便、洗涤剂和某些工业废水。污水中的磷以正磷酸盐、聚磷酸盐和有机磷等形式溶解于水中。一般仅能通过物理、化学或生物方法使溶解的磷化合物转化为固体形态后予以分离。除磷的方法主要分为物理法,化学法及生物法三大类。物理法因成本过高、技术复杂而很少应用。下面主要介绍化学法及生物法。

    1.化学法除磷

化学法是最早采用的一种除磷方法。它是以磷酸盐能和某些化学物质如铝盐、铁盐、石灰等反应生成不溶的沉淀物为基础进行的,反应如表18—2所示。这些反应常有伴生反应,产物常具絮凝作用,有助于磷酸盐的分离。   

化学法的特点是磷的去除率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷而造成二次污染,但污泥的产量比较大。

    2.生物法除磷

        生物法除磷是新工艺,近二十年来受到了广泛的重视和研究。它是利用微生物在好氧条件下对污水中溶解性磷酸盐的过量吸收作用,然后沉淀分离而除磷。含有过量磷的污泥部分以剩余污泥的形式排出系统,大部分和污水一起进入厌氧状态,此时污水中的有机物在厌氧发酵产酸菌的作用下转化为乙酸苷;而活性污泥中的聚磷菌在厌氧的不利状态下,将体内积聚的聚磷分解,分解产生的能量部分供聚磷菌生存。另一部分能量供聚磷菌主动吸收乙酸苷转化为PHB (β羟基丁酸)的形态储藏于体内。聚磷分解形成的无机磷释放回污水中,这  就是厌氧放磷。进人好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解并释出大量能量供聚磷菌增殖,部分供其主动吸收污水中的磷酸盐,以聚磷的形式积聚于体内,这就是好氧吸磷。由于活性污泥在运行中不断增殖,为了系统的稳定运行,必须从系统中排除和增殖量相当的活性污泥,也就是剩余污泥。剩余污泥中包含过量吸收磷的聚磷菌,也就是从污水中去除的含磷物质。这就是厌氧和好氧交替的生物处理系统除磷的本质。

从以上论述可知,在厌氧状态下放磷愈多,合成的PHB愈多,则在好氧状态下合成的聚磷量愈多,除磷的效果也就愈好。合成PHB的量和碳源的性质密切相关,乙酸等低级脂肪酸易被聚磷菌吸收转化为PHB,因而在厌氧区加入消化池上清液可提高放磷速率。硝酸盐对厌氧放磷不利,它有助于反硝化菌的增长,从而和聚磷菌争夺碳源,抑制其生长和放磷。温度对放磷也有重要的影响。当温度从10℃上升到30℃时,放磷速率可提高5倍。

生物除磷的基本类型有二种:AO法和Phostrip工艺。

(1) AO

是由厌氧池和好氧池组成的同时去除污水中有机污染物及磷的处理系统,其流程如图18—7所示。

    为了使微生物在好氧池中易于吸收磷,溶解氧应维持在2mgL以上,pH值应控制在7~8之间。磷的去除率还取决于进水中的B0D5与磷浓度之比。据报道,如果这一比值大于10:1,出水中磷的浓度可在1mgL左右。由于微生物吸收磷是可逆的过程,过长的曝气时间及污泥在沉淀池中停留时间过长都有可能造成磷的释放。

(2)Phostrip中去除磷工艺流程见图18—8。   

从上图可知,该工艺主流是常规的活性污泥工艺,而在回流污泥过程中增设厌氧放磷池和上清液的化学沉淀池,称为旁路。约0.10.2qV的回流污泥经厌氧放磷后再和进水一起进入曝气池吸收磷。因而该法是一种生物法和化学法协同的除磷方法。该工艺操作稳定性好,出流中磷含量可小于1.5mgL。表18—3中列出了AO法和Phostrip法的典型设计参数。