细胞生物学

王卫东

目录

  • 1 教学安排与课程要求
    • 1.1 课程公告
    • 1.2 教学进度表
    • 1.3 课程学习要求
    • 1.4 名词解释如何答题
    • 1.5 关于教材——翟中和先生与《细胞生物学》的故事
    • 1.6 教科书太差,诺奖得主组队重写!让人只看插图也能读懂
    • 1.7 金艳霞:细胞生物学学习心得
    • 1.8 创意课堂集锦
    • 1.9 2021全国 “创意课堂”大赛获奖作品
    • 1.10 Cell Biology Video Links
  • 2 绪论-细胞概述
    • 2.1 本章教案
    • 2.2 本章导学
    • 2.3 教学课件
    • 2.4 教学视频
    • 2.5 教学动画
    • 2.6 单元自测
    • 2.7 讨论
    • 2.8 Suggested Reading
      • 2.8.1 胡克和虎克
      • 2.8.2 施莱登:从律师到植物学家,联合开创细胞学说
      • 2.8.3 他,企图自杀;他,胆小内向;他们在一起会发生什么?
      • 2.8.4 极端环境下的生命
      • 2.8.5 古菌传奇-卡尔·乌斯(Carl Woese)
      • 2.8.6 未来科学大奖得主李文辉:敢于挑战看似不可能的问题
      • 2.8.7 神奇的细胞内部之旅
  • 3 细胞生物学研究方法
    • 3.1 本章教案
    • 3.2 本章导学
    • 3.3 教学课件
    • 3.4 教学视频
    • 3.5 教学动画
    • 3.6 单元自测
    • 3.7 讨论
    • 3.8 Web Links
    • 3.9 Suggested Reading
      • 3.9.1 光学显微镜分辨率极限
      • 3.9.2 荧光蛋白的过去、现在和未来
      • 3.9.3 绿色荧光蛋白(GFP)的发现与应用
      • 3.9.4 做贡献的人很多,登上领奖台的只有三个
      • 3.9.5 海拉(HeLa)细胞
      • 3.9.6 你体内的细胞,属于你吗?
      • 3.9.7 李栋:10年抵达0.00000006米,分辨率并非唯一答案
      • 3.9.8 浅谈细胞冻存
  • 4 细胞质膜
    • 4.1 本章教案
    • 4.2 本章导学
    • 4.3 教学课件
    • 4.4 教学视频
    • 4.5 单元自测
    • 4.6 讨论
    • 4.7 Web Links
    • 4.8 Suggested Reading
      • 4.8.1 关于红细胞的表面积
      • 4.8.2 细胞膜的发现
      • 4.8.3 细胞膜的探索历程
      • 4.8.4 生物膜曲度形成机制的探讨
      • 4.8.5 镰状血红蛋白如何帮助镰状细胞贫血患者或携带者抵抗疟疾?
  • 5 物质的跨膜运输
    • 5.1 本章教案
    • 5.2 本章导学
    • 5.3 教学课件
    • 5.4 教学视频
    • 5.5 教学动画
    • 5.6 颜宁_Membrane Transport Proteins
    • 5.7 单元自测
    • 5.8 讨论
    • 5.9 Web Links
    • 5.10 Suggested Reading
      • 5.10.1 烟碱型乙酰胆碱受体辅助分子的调节机制及疾病治疗转化应用前景
      • 5.10.2 主动运输的物质一定都是逆浓度运输?
      • 5.10.3 葡萄糖的运输方式是主动运输吗?
      • 5.10.4 胞吞、胞吐是跨膜运输吗?是主动运输吗?
      • 5.10.5 高中教材:中国科学家揭示GLUT1结构及工作机理
      • 5.10.6 主动运输能够顺浓度梯度进行吗?如果可以的话,还消耗能量吗?
      • 5.10.7 glucose transporters
      • 5.10.8 HIV如何感染细胞
      • 5.10.9 新冠疫情下的老药“氯喹”
  • 6 细胞质基质和内膜系统
    • 6.1 本章教案
    • 6.2 本章导学
    • 6.3 教学课件
    • 6.4 教学视频
    • 6.5 教学动画
    • 6.6 单元自测
    • 6.7 讨论
    • 6.8 Web Links
    • 6.9 Suggested Reading
      • 6.9.1 科学春秋:诺奖级科研成果在眼前却被忽略,奥秘何在?
      • 6.9.2 天使综合征与UBE3A基因
      • 6.9.3 阿龙·切哈诺沃诺贝尔化学奖获得者:发现泛素介导的蛋白质降解
      • 6.9.4 阿龙•切哈诺沃 我的成长经历-泛素发现者
      • 6.9.5 中国科学家贡献-青蒿素抗疟机理
      • 6.9.6 溶酶体的发现者-德迪夫(ChristiandeDuve)
      • 6.9.7 探微细胞世界的“三剑客”:克劳德、德迪夫和帕拉德
      • 6.9.8 lysosome的发现
      • 6.9.9 细胞内糖基化-糖类、糖科学与糖的世界
      • 6.9.10 自噬体成熟的机制、调控和病理生理学意义
  • 7 蛋白质分选与膜泡运输
    • 7.1 本章教案
    • 7.2 本章导学
    • 7.3 教学课件
    • 7.4 教学视频
    • 7.5 教学动画
    • 7.6 单元自测
    • 7.7 讨论
    • 7.8 Web Links
    • 7.9 Suggested Reading
      • 7.9.1 一幅图看懂2013年诺贝尔生理医学奖
      • 7.9.2 一个本科生,只用了两年就拿下诺贝尔奖,拯救了无数糖尿病患者
      • 7.9.3 胰岛素的生物合成和分泌途径
      • 7.9.4 “雨伞谋杀案”揭秘
      • 7.9.5 2013诺奖阅读
  • 8 线粒体
    • 8.1 本章教案
    • 8.2 本章导学
    • 8.3 教学课件
    • 8.4 教学视频
    • 8.5 教学动画
    • 8.6 单元自测
    • 8.7 讨论
    • 8.8 Web Links
    • 8.9 Suggested Reading
      • 8.9.1 氧化磷酸化抑制剂和解偶联剂
      • 8.9.2 ATP是如何供能的?
      • 8.9.3 氧气有毒?那我们怎么活下来的?
      • 8.9.4 高中教材:中国科学家的贡献
      • 8.9.5 线粒体疾病
  • 9 细胞骨架
    • 9.1 本章教案
    • 9.2 本章导学
    • 9.3 教学课件
    • 9.4 教学视频
    • 9.5 教学动画
    • 9.6 单元自测
    • 9.7 Web Links
    • 9.8 Suggested Reading
      • 9.8.1 饶毅:超男研究生
      • 9.8.2 Myosin VI
      • 9.8.3 纤毛
      • 9.8.4 【细胞世界】纤毛-细胞的“天线”和“船桨”
    • 9.9 纤毛讲课视频-金艳霞
  • 10 细胞核与染色质
    • 10.1 本章教案
    • 10.2 本章导学
    • 10.3 教学课件
    • 10.4 教学视频
    • 10.5 教学动画
    • 10.6 单元自测
    • 10.7 讨论
    • 10.8 Web Links
    • 10.9 Suggested Reading
      • 10.9.1 DNA 复制过程中,组蛋白如何复制?核小体如何重组?组蛋白修饰如何遗传?
      • 10.9.2 端粒和端粒酶的发现历程
      • 10.9.3 他们用一页论文拿到诺奖,只因看到一张照片
      • 10.9.4 科学家传:遗传学家徐道觉的精彩人生
      • 10.9.5 Science | 翻译结束后怎么停?新技术揭示翻译终止全过程
      • 10.9.6 中国科学家贡献-人工合成染色体
      • 10.9.7 施一公团队解析核孔复合体结构
      • 10.9.8 人类24条染色体
  • 11 细胞信号转导
    • 11.1 本章教案
    • 11.2 本章导学
    • 11.3 教学课件
    • 11.4 教学视频
    • 11.5 教学动画
    • 11.6 单元自测
    • 11.7 Web Links
    • 11.8 Suggested Reading
      • 11.8.1 NO发现
      • 11.8.2 G蛋白偶联受体:生命科学和药物研发的“宝藏”
      • 11.8.3 霍乱之谜-创意课堂
      • 11.8.4 Mechanism of insulin secretion from pancreatic β-cells and glucagon release from α cells
  • 12 细胞周期与细胞分裂
    • 12.1 本章教案
    • 12.2 本章导学
    • 12.3 教学课件
    • 12.4 教学视频
    • 12.5 教学动画
    • 12.6 单元自测
    • 12.7 讨论
    • 12.8 Web Links
    • 12.9 Suggested Reading
      • 12.9.1 动物细胞有丝分裂图中没有画同源染色体,为什么?
      • 12.9.2 无丝分裂
  • 13 细胞增殖调控与癌细胞
    • 13.1 本章教案
    • 13.2 本章导学
    • 13.3 教学课件
    • 13.4 教学视频
    • 13.5 教学动画
    • 13.6 单元自测
    • 13.7 讨论
    • 13.8 Web Links
    • 13.9 Suggested Reading
      • 13.9.1 模式生物里的青蛙王子
      • 13.9.2 新研究揭示了“活性氧”自由基如何驱动细胞分裂
  • 14 细胞分化与干细胞
    • 14.1 本章教案
    • 14.2 本章导学
    • 14.3 教学课件
    • 14.4 教学视频
    • 14.5 教学动画
    • 14.6 单元自测
    • 14.7 讨论
    • 14.8 Web Links
    • 14.9 Suggested Reading
      • 14.9.1 干细胞研究与应用—为人类生命健康提供保障
      • 14.9.2 从多莉羊到克隆猴
      • 14.9.3 从克隆猴的成功谈中国创新
      • 14.9.4 高中教材:中国科学家贡献-世界首例体细胞克隆猴诞生
      • 14.9.5 高中教材:中华骨髓库
  • 15 细胞衰老与细胞程序性死亡
    • 15.1 本章教案
    • 15.2 本章导学
    • 15.3 教学课件
    • 15.4 教学视频
    • 15.5 教学动画
    • 15.6 施一公_细胞凋亡的分子机理
    • 15.7 单元自测
    • 15.8 讨论
    • 15.9 Suggested Reading
      • 15.9.1 细胞的N种花样死法
      • 15.9.2 细胞凋亡生化通路的发现者——记华裔科学家王晓东
      • 15.9.3 凋亡的线粒体途径-王晓东的科研思路追踪
      • 15.9.4 癌细胞高清生死实录!
      • 15.9.5 《nature》揭开衰老的细胞秘密
  • 16 细胞的社会联系
    • 16.1 本章教案
    • 16.2 本章导学
    • 16.3 教学课件
    • 16.4 教学视频
    • 16.5 教学动画
    • 16.6 单元自测
    • 16.7 Web Links
    • 16.8 Suggested Reading
      • 16.8.1 inner life of a cell解析
      • 16.8.2 维生素C的历史——从征服“海上凶神”到诺贝尔奖
Suggested Reading

咏显微镜

清•乾隆

玻璃制为镜,视远已堪奇。何来僾逮器,其名曰显微。

能照小为大,物莫遁毫釐。远已莫可隐,细又鲜或遗。

我思水清喻,置而弗用之。


1.1 The Origin and Evolution of Cells

Archibald, J. M. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25: R911–R921.

Joyce, G. F. 2007. A glimpse of biology's first enzyme. Science 315: 1507–1508.

Erika Check Hayden. (2015) How to beat HIV. Nature, 523:146-148. (“如何击退HIV病毒”)

Elie Dolgin. (2019) The secret social lives of viruses. Nature, 570: 290-292. (“聆听病毒的私语——病毒社交的秘密”)

施莱登、蔡司及阿贝(引自http://cn.comsol.com/blogs?p=247051)

蔡司、阿贝以及显微镜和光学研究的故事

Author Image

by Brianne Christopher

2019年 9月 11日

蝙蝠侠和罗宾,杜松子酒和汤力水,卡尔·蔡司和恩斯特·阿贝,这些都是大家熟知的经典二人搭档,尽管你可能没听说过最后一个组合,但他们的合作使显微镜和光学透镜的开发取得了重大进步。这个故事发生在 19 世纪,故事中涉及一个风景如画的德国小镇,显微镜、一个锤子和铁砧(锤砸东西时垫在底下的器具称为“砧”)…… 这个故事表明了,当实验与理论结合后会产生意想不到效果。想象一下,如果再加上仿真又会发生什么?

卡尔·蔡司光学工作室的起源

卡尔·蔡司(Carl Zeiss)于 1816 年出生于德国魏玛(Weimar)一个富裕并富有艺术气息的家庭。毕业后,蔡司在德国小镇耶拿(Jena)跟随著名的宫廷技师和讲师弗里德里希·科尔纳(Friedrich Körner)做学徒。在科尔纳的带领下,蔡司可以自由地关注他感兴趣的领域并研究数学和自然科学。之后,他继续从事与机械工程有关的工作,并成为一名旅行销售,游遍全国。

A black-and-white image of Carl Zeiss.
卡尔·蔡司的画像。图片是通过Wikimedia Commons公开发布,版权归其原籍国以及其他国家和地区的公有领域所有,版权期限为作者寿命加上 70 年或更短的时间。

就在这个时期,生物学家马蒂亚斯·施莱登(Matthias Schleiden)提出了众所周知的理论,即所有生命都是由细胞组成的。一时间,生物学开始蓬勃发展以及显微镜成为了当下非常受欢迎的工具。但是,显微镜很昂贵,而且它们能观察到的细胞图像也不是很好。施莱登对科尔纳的工作很熟悉,并且知道蔡司的这位前导师可以制造出价格更低的显微镜,这些显微镜的工作原理与市场上已有的显微镜一样。因此,他们开始了合作关系。

An image of blood cells in the view of a modern-day microscope.
通过现代显微镜看到的血细胞。在蔡司时代,细胞的重要性仍然是一个相对较新的观点。图片由美国空军合影/空军一等兵劳拉·麦克斯(Laura Max)提供。此图像或文件是美国空军飞行员或雇员的作品,是其作为其正式职责的一部分而拍摄或制成的。作为美国联邦政府的工作,该图像或文件在美国属于公共领域。图片来自Wikimedia Commons

当蔡司厌倦了旅途中的生活后,他回到了耶拿(Jena)并开始了观察自然科学家的日常生活。尽管他没有像他们那样拥有广泛的理论科学背景,但是他的观察使他对设备的需求有了更好的了解。事实证明,这对科尔纳显微镜的生产很有帮助。

1846 年,蔡司开设了一家精密机械车间。Körner 逝世后,他继续在那里生产基础显微镜。蔡司因生产具有自己独特设计和风格的显微镜而迅速在科学界赢得了良好声誉。

至少可以说,卡尔·蔡司的实验室是独一无二的。蔡司被称为完美主义者,他会在工厂生产前用锤子和铁砧摧毁不达标的显微镜。但是,即使是按现代标准,他对工人也非常慷慨。尽管他们每天工作超过 12 个小时,员工可以获得公司场所的免费医疗服务、带薪病假时间和遣散费,这在当时是闻所未闻的。他的事业进一步发展,蔡司在生产基础显微镜外,开始开发复合仪器。

改良显微镜的巨大需求

基础显微镜仅依靠角放大率就能看到被研究的物体。顾名思义,复合显微镜包含两个或多个透镜。一个物镜靠近被研究物体的放置处会聚光,从而将真实图像聚焦在显微镜内部。然后,该图像被另一个称为目镜的透镜放大。与基础显微镜相比,观察者可以在更高的放大倍率下获得一个放大的倒置的物体图像。

A photograph of a compound microscope similar to those developed by Carl Zeiss.
复合显微镜,就像大约 1914 年卡尔·蔡司(Carl Zeiss)开发的这种双筒望远镜,比基础显微镜产生的图像质量更高。图片来自查德·安德森(Chad Anderson)的图片-SFO博物馆。通过Wikimedia CommonsCC BY-SA 2.0下获得许可。

施莱登(Schleiden)撰写了关于需要复合显微镜来推进生物学研究的文章,而蔡司刚好可以胜任这项工作。但是,当他不完全了解其背后的物理原理时,他不愿意设计某些东西。即使是非技术人员,基础显微镜的内部工作原理也很容易理解,但是复合显微镜涉及更多的光学理论。

尽管蔡司具有数学和科学背景,但他仍需要与光学科学家共同努力。

恩斯特·阿贝的加入

恩斯特·阿贝(Ernst Abbe)于 1840 年出生于德国的艾森纳赫(Eisenach),起初他并不出名(与蔡司不同),仅在当地大学担任讲师。开始与蔡司合作时,阿贝只有 26 岁,由于耶拿当时还是一个小镇,所以他们可能走过同一条路。

A portrait of Ernst Abbe.
恩斯特·阿贝(Ernst Abbe)的肖像。图片通过Wikimedia Commons公开发布,版权由其原籍国以及其他国家和地区的公有领域所有,版权期限为作者寿命加上 70 年或更短时间。

阿贝通过将分析理论应用于显微镜设计来帮助蔡司。他的贡献,包括阿贝正弦条件和光的波动特性,至今在光学和傅立叶光学的研究中仍然很有用。

卡尔·蔡司基金会在显微镜技术上的发展

由于生物学研究的蓬勃发展,蔡司的许多竞争对手对他的试错方法不停的议论,并批评他的设计过于基础。研究人员想要可以得到更高质量图像的显微镜。阿贝发现了蔡司设计的理论局限,但是由于当时可用材料的限制使得他们不可能设计出可以接近理论值的显微镜。团队需要在市场上取得先机,这时出现了另一位关键人物……

耶拿当地一所大学的一位博士校友加入了他们。化学家奥托·肖特(Otto Schott)帮助蔡司和阿贝为显微镜开发了更好的光学玻璃,从而使能够产生更高质量、更清晰的图像。这种特殊的新型光学玻璃使蔡司能够生产世界上最先进的显微镜。肖特拥有自己的玻璃工厂实验室,该实验室今天仍在运行。

耶拿的持久性遗产

在运营高峰时,卡尔·蔡司的车间雇用了 250 多名员工,制造了 10000 多台显微镜。不幸的是,蔡司在这个时候过世了。阿贝接管了公司,并根据蔡司的愿景继续带领公司前进。如今,Zeiss,Inc. 被称为照相机镜头的领先开发商,而曾经的学术小镇耶拿(Jena)现在已成为光子学和光学技术研发的温床。

Side-by-side photographs of Carl Zeiss' grave and the Zeiss Planetarium, both located in Jena.
左:卡尔·蔡司的坟墓。通过Wikimedia Commons在公共领域中的图像。右:耶拿(Zena)的蔡司天文馆。图片由 Michael Mertens — Flickr.com 提供,并通过Wikimedia Commons在 CC BY-SA 2.0 下获得许可。

蔡司、阿贝以及他们显微镜的故事显示了从经验研究到分析计算的重要历程。蔡司的车间起初是一个反复试验的过程,在该过程中,设计不达标的原型在重新开始之前都会被手工销毁。在阿贝的帮助下,蔡司可以使用光学原理设计先进的复合显微镜,以确保获得最佳性能。

那么,他们旅程的下一个阶段又是什么呢?一种可能性是光线追踪软件,这类软件可以对光学大型系统中的光线轨迹进行可视化和分析,以开发新的显微镜。COMSOL Multiphysics® 软件及其附加的射线光学模块使这一设想成为可能。例如,COMSOL 案例库中的双高斯透镜教程模型演示了如何使用 COMSOL® 软件模拟最初由 Zeiss,Inc. 眼镜开发商于 1897 年在耶拿进行的设计。

An image of a double Gauss lens modeled in COMSOL Multiphysics®.
双高斯镜头模型。

STOP 分析可以分析设备的结构、热和光学性能,这是多物理场仿真非常有价值的另一个示例。COMSOL Multiphysics 中的各种模型包括内置的 Schott 目录中的玻璃,以及其他各种制造商的眼镜。例如,具有表面对表面辐射的 Petzval 透镜 STOP 分析教程中 演示了 Schott 热光 色散模型。

An image of a Petzval lens model with STOP analysis simulation results.
Petzval 镜头模型的 STOP 分析。

蔡司、阿贝以及他们显微镜的故事是一个关于结合经验研究、分析计算、多物理场仿真以及同事之间的协作改变生活例子,相信历史上和今天仍有很多这样的创新故事正在发生。


列文虎克死守的秘密,终于被科学家揭开:就这?

 栗子 果壳 6月30日



安东尼·范·列文虎克丨Wikimedia Commons

17世纪,荷兰商人安东尼·范·列文虎克用自制的显微镜,第一次观察到了单细胞生物,人类也从此打开了微生物学的大门。 

列文虎克能发现前人从未见过的世界,是因为他的显微镜放大倍数,比同时代的对手们高出一个数量级。比如,现存放大倍数最高的一台列文虎克显微镜,能将物体放大266倍。 

这个男人向世人说出了微观世界的秘密,但一问到他的显微镜里藏着怎样的镜片,用何种工艺制成,列文虎克便守口如瓶。外界一直对此十分好奇,就连最早用显微镜发现细胞的前辈罗伯特·胡克都不例外。 

如今300多年过去,荷兰代尔夫特理工大学的科学家们终于从那台“266倍镜”里看出了镜片的样子,同时也替罗伯特·胡克感受到一丝微妙。 


怎么跟说好的不一样?

从前,人们大多是利用X射线来观察列文虎克显微镜的内部,好像医院里拍片那样。 

能放大物体266倍的列文虎克显微镜,藏于乌得勒支大学博物馆丨参考文献1

但列文虎克显微镜的孔径太小,不到1毫米,镜片只有很小一部分暴露在外,90%以上都被黄铜板覆盖X射线不易穿透金属,就很难检测出里面的镜片是什么形状。 

于是,代尔夫特理工大学的科学家们不用X射线,改用中子层析(Neutron Tomography)的办法。与X射线相比,中子束对大部分金属的穿透能力更强。中子不会因为原子核外电子的影响而严重衰减,而X射线里的光子更容易被电子吸收或散射。 

发射中子束,科学家就可以在不破坏文物的情况下,看出现存放大倍数最高的那台列文虎克显微镜里面的样子了: 

显微镜(266x)的中子层析成像,灰色为镜片所在,各角度看都是圆形,直径大约1.3毫米丨参考文献1

左为显微镜(266x)本体,右为3D重建之后丨参考文献1

搭载镜片的黄铜板很薄,且镶嵌镜片的位置是凹进的。这样,镜片前表面可以凸出于黄铜板,镜片也能离观察样本近一点,再近一点。科学家们相信,“近”是列文虎克设计中的重要考量。 

当然,他们更关心的还是镜片形状。成像显示,不论从哪个方向看,镜片的截面都是圆形。也就是说,那是颗玻璃球。而从用显微镜观察物体时的视角(也就是图中XZ方向)看,还会发现一条玻璃线与玻璃球相连。

圆形连着一条短线丨参考文献1

但这样的结果,与学界先前的认知大相径庭。从前的一项主要研究认为,这台“266倍镜”搭载的镜片并非球状,而是球被压扁一些的样子(下图)。如今的成像结果却指向,它的镜片就是球状,加一条线。 

1981年一项研究认为显微镜(266x)的镜片是如此得来:把玻璃管吹成灯泡的形状,再将末端鼓起的部分掰下来,得到的镜片比较扁丨参考文献1

而当科学家们对另一台中等放大倍数的列文虎克显微镜也做了成像,发现镜片倒是扁了许多,更像小扁豆的形状。 

中等放大倍数(118x)显微镜的成像结果,镜片更扁丨参考文献1

小扁豆丨Medical News Today

研究团队的这项成果,发表在5月的一期Science Advances期刊上。 

新的成像打破了旧有的认知,但也没有完全超出科学家的想象。因为,他们对那种一个球连着一条线的形状有印象。 


怎么和胡克的方案很像?


1670年代,列文虎克把一滴池塘水放在显微镜下,发现里面竟有许许多多“微小的动物”游来游去。从此,他开始将自己观察各种样本所见的“微小动物”,写信描述给英国皇家学院。 

图片

列文虎克观察一滴水丨Google Doodle

今天我们知道,他看到的是微生物。但在时人眼中,信里描述的场景难以置信,加之列文虎克一直拒绝透露使用的是怎样的设备,质疑和嘲讽接踵而来。1676年,皇家学会对那些“微小动物”的真实性提出疑问。在列文虎克坚持下,皇家学会安排多位宗教界高层鉴定他的观察结果。 

1677年,列文虎克的发现得到了认可。但显微镜内部的秘密,并没有因此解开。时任皇家学会秘书的罗伯特·胡克,也是首先用显微镜看到细胞的人,便对列文虎克的秘而不宣颇有怨言。哪怕不论政治,一项科学发现的透明性和可复现性,也是皇家学会看重的因素。  

1678年,胡克索性自己发表了一种“超级简单”的方案: 

把一根细玻璃棒放在火焰上,当它慢慢融化,末端便会卷成一个小球。把小球掰下来,留一个小把手,方便安装。

科学家重建的镜片形状丨Rijksmuseum Boerhaave

一个小球连着一根线。时隔三个多世纪的今天,科学家们终于发现,列文虎克那一台能够放大物体266倍的显微镜,镜片原来与胡克的“超级简单”方案十分吻合。  

这个方案,其实是1665年胡克所著《显微图谱》(Micrographia)中介绍过的一种方法的变体。差别只在于那个小把手,书中曾经认为需要磨掉。而《显微图谱》风靡的年代,早于列文虎克制造显微镜的全部生涯。 

《显微图谱》丨罗伯特·胡克

那么,“266倍镜”的制造很可能借鉴了胡克的方法,而非采用什么秘制工艺这个发现让研究团队相信,列文虎克的保密行为是面向竞争对手有意为之。 

1685年,锲而不舍的胡克把一位皇家学会会士送到荷兰代尔夫特,试图从列文虎克那里获取显微镜的一些细节,依旧无所得。如今科学家们也稍稍替胡克感到讽刺,因为他一直寻找的答案,可能早在自己心里。 

但即便如此,也是列文虎克自身的技艺让胡克的方法发挥出了同时期里最大的效用。列文虎克显微镜的放大倍数,直到100多年后才被超越。 


怎么也研究不完

原本,列文虎克是一位布料商人,希望能有一种工具让他把每根丝线看得更清晰,以判断品质的优劣。 

而在游历英国并受到胡克《显微图谱》的启发后,列文虎克对显微技术的钻研便一发不可收拾。 

他观察过各种各样的细胞,还会把它们画下来,比如1-4为兔子的精子,5-8为狗的精子丨安东尼·范·列文虎克

他一生中制造了超过400台显微镜,打磨镜片的技艺精湛,火工和吹制也得心应手。而除开那些常规操作,列文虎克可能还探索过一些外界看来不可思议的工具:有历史文件显示,他曾经用一颗鳕鱼卵作透镜,来观察周围事物的倒像。 

只不过,400多台显微镜中只有11台存世,列文虎克本人对工艺的描述又微乎其微,于是外界对他的显微镜制造方法了解甚少,大部分信息仍待挖掘。 

而科学家们也在论文里写到,列文虎克制造显微镜镜片时用的工艺,怎么研究都不会枯竭,因为没有哪一种工艺是可以被完全排除的。


参考文献

[1] Cocquyt, T., Zhou, Z., Plomp, J., & Van Eijck, L. (2021). Neutron tomography of Van Leeuwenhoek’s microscopes. Science Advances, 7(20), eabf2402.

[2] van Zuylen, J. (1981). The microscopes of Antoni van Leeuwenhoek. Journal of microscopy, 121(3), 309-328.

[3] Dobell, C. (1932). Antony van Leeuwenhoek and his" Little Animals." Being Some Account of the Father of Protozoology and Bacteriology and his Multifarious Discoveries in these Disciplines.

[4] Schierbeek, A., & Rooseboom, M. (1959). Measuring the invisible world: the life and works of Antoni van Leeuwenhoek (No. 37). Abelard-Schuman.


作者:栗子

编辑:Odette