数据可视化

余凌 胡昌龙 严庆 田萌

目录

  • 1 数据可视化概述
    • 1.1 思政导读
    • 1.2 数据可视化基础
    • 1.3 数据可视化作用
    • 1.4 数据可视化的目标
    • 1.5 数据可视化的特征与应用
    • 1.6 本章课件
    • 1.7 分享阅读-AaronKoblin人性的艺术表达
  • 2 数据可视化原理
    • 2.1 思政导读
    • 2.2 视觉
    • 2.3 色彩
    • 2.4 视觉编码原则
    • 2.5 数据可视化流程
    • 2.6 本章课件
    • 2.7 分享阅读-
  • 3 数据可视化图表
    • 3.1 思政导读
    • 3.2 理解图表
    • 3.3 图表元素的增强控制
    • 3.4 图表类型选择
    • 3.5 图表制作技巧
    • 3.6 本章课件
    • 3.7 数据可视化图表基础及图表设计+第二次作业要求
    • 3.8 分享阅读-
  • 4 数据可视化设计
    • 4.1 思政导读
    • 4.2 设计原则与技巧
    • 4.3 可视化设计步骤
    • 4.4 可视化框架
    • 4.5 本章课件
    • 4.6 分享阅读-
  • 5 时变数据可视化
    • 5.1 思政导读
    • 5.2 时间属性的可视化
    • 5.3 地理空间数据可视化
    • 5.4 文本与文档可视化
    • 5.5 本章课件
    • 5.6 分享阅读-
  • 6 数据挖掘与数据处理
    • 6.1 思政导读
    • 6.2 数据
    • 6.3 数据集
    • 6.4 数据获取与预处理
    • 6.5 数据存储
    • 6.6 数据组织与管理
    • 6.7 数据挖掘与分析
    • 6.8 本章课件
    • 6.9 分享阅读-
  • 7 数据可视化工具
    • 7.1 Echarts
    • 7.2 Python集成开发环境Jupyter
    • 7.3 本章课件
  • 8 数据可视化评测实例
    • 8.1 案例1
    • 8.2 案例2
    • 8.3 本章课件
  • 9 数据可视化趋势及挑战
    • 9.1 思政导读
    • 9.2 数据可视化资源
    • 9.3 数据可视化研究
    • 9.4 未来趋势
    • 9.5 研究挑战
    • 9.6 本章课件
  • 10 数据可视化案例
    • 10.1 经典数据可视化案例
    • 10.2 用Excel实现数据可视化—快速实现业务报表可视化
    • 10.3 “好服务”零售品牌文献研究现状分析
    • 10.4 数据分析师招聘可视化分析
    • 10.5 长江中游城市群创新网络演变可视化
    • 10.6 分享阅读-2020级优秀作品展示
    • 10.7 分享阅读-2021级学生优秀作品
  • 11 电子商务数据可视化实例
    • 11.1 电商数据的采集与预处理
    • 11.2 商品数据分析
    • 11.3 市场数据与竞争数据分析
    • 11.4 流量与转化数据分析
    • 11.5 电商采购与销售数据分析
    • 11.6 库存数据分析
    • 11.7 客户画像分析
  • 12 推荐课外阅读
    • 12.1 《深度学习——智能时代的核心驱动力量
    • 12.2 《AIGC:智能创作时代》
    • 12.3 《天才与算法》
    • 12.4 《5000天后的世界》
    • 12.5 《AI未来进行式》
    • 12.6 《数据型思维》
    • 12.7 《做成大事的艺术》
    • 12.8 《新媒体的语言》
    • 12.9 《开放式创新》
    • 12.10 《别相信直觉》
    • 12.11 《为什么伟大不能被计划》
    • 12.12 《智识分子》
    • 12.13 《算法的陷阱》
    • 12.14 《崛起的超级智能》
    • 12.15 《人工不智能:计算机如何误解世界》
    • 12.16 《销售脑科学》
思政导读

《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》对外发布,从数据产权、流通交易、收益分配、安全治理等方面构建数据基础制度,提出20条政策举措。数据二十条的出台,将充分发挥中国海量数据规模和丰富应用场景优势,激活数据要素潜能,做强做优做大数字经济,增强经济发展新动能。

大数据是继云计算、物联网和移动互联网之后新一代信息技术革命的制高点,是当今社会重要的基础性战略资源,不仅代表着当前信息技术的新热点、产业发展的新方向,更是加快推动经济社会转型升级的新引擎。创新引领。坚持以用促建、建以致用、产用结合的基本发展思路,鼓励相关高校、企业、研究机构加大对大数据技术创新、模式创新、应用创新和管理创新的研发投入,积极探索大数据产学研用协同发展机制,大力营造有利于企业创新成果转化的大数据应用环境。通过以上政策的描述,可以了解到数据要素的重要性,而数据可视化是激发数据要素的一大利器,工欲善其事必先利其器,本章将带领大家学习数据可视化原理。

(摘自《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》https://www.gov.cn/zhengce/2022-12/21/content_5732906.htm”、《湖北省大数据发展行动计划(2016-2020年)》http://www.hubei.gov.cn/zfwj/ezf/201609/t20160929_1711980.shtml