目录

  • 1 Chapter 1 Introduction
    • 1.1 1.0 Course Contents
    • 1.2 1.1 Basic Conception
      • 1.2.1 Lecture 1
      • 1.2.2 Lecture 2
    • 1.3 1.2 Compiler Structure
      • 1.3.1 Lecture 1
      • 1.3.2 Lecture 2
      • 1.3.3 Lecture 3
    • 1.4 1.3 The Technique of Compiler Developing
  • 2 Chapter 2 Conspectus of Formal Language
    • 2.1 2.1 Alphabets and Strings
      • 2.1.1 Lecture 1
      • 2.1.2 Lecture 2
    • 2.2 2.2 Grammars and its Categories
      • 2.2.1 Lecture 1
      • 2.2.2 Lecture 2
    • 2.3 2.3 Languages and Parse Tree
      • 2.3.1 Lecture 1
      • 2.3.2 Lecture 2
    • 2.4 2.4 Notes of Formal Language
    • 2.5 2.5 Basic Parsing Techniques
      • 2.5.1 Lecture 1
      • 2.5.2 Lecture 2
  • 3 Chapter 3 Finite Automata
    • 3.1 3.1 Formal Definition of FA
      • 3.1.1 Lecture 1
      • 3.1.2 Lecture 2
    • 3.2 3.2 Transition from NDFA to DFA
      • 3.2.1 Lecture 1
      • 3.2.2 Lecture 2
      • 3.2.3 Lecture 3
    • 3.3 3.3 RG and FA
    • 3.4 3.4 Regular Expression & Regular Set
      • 3.4.1 Lecture 1
      • 3.4.2 Lecture 2
  • 4 Chapter 4 Scanner(Lexical Analyzer)
    • 4.1 4.1 Lexical Analyzer and Tokens
      • 4.1.1 Lecture 1
      • 4.1.2 Lecture 2
    • 4.2 4.2 Step for developing a lexical analyzer
    • 4.3 4.3  Dealing with Identifier
    • 4.4 4.4  Using Regular Expressions
    • 4.5 4.5 Using Flex
      • 4.5.1 Lecture 1
      • 4.5.2 Lecture 2
  • 5 Chapter 5 Top-Down Parsing
    • 5.1 5.0 Push Down Automata (PDA, Added)
      • 5.1.1 Lecture 1
      • 5.1.2 Lecture 2
      • 5.1.3 Lecture 3
    • 5.2 5.1 Elimination Left-Recursion
    • 5.3 5.2 LL(k) Grammar
      • 5.3.1 Lecture 1
      • 5.3.2 Lecture 2
    • 5.4 5.3 Deterministic LL(1) Analyzer Construction
    • 5.5 5.4 Recursive-descent (Non-backtracking) parsing
    • 5.6 5.5 复习与结课
      • 5.6.1 Lecture1 结课感言
      • 5.6.2 Lecture 2 关于复习
      • 5.6.3 Lecture 3 习题讲解
  • 6 Chapter 6 bottom-up Parsing and precedence analyzer
    • 6.1 6.1 Bottom-Up Parsing
    • 6.2 6.2 Phrase, Simple Phrase and Handle
    • 6.3 6.3 A Shift-Reduce Parser
    • 6.4 6.4 Some Relations on Grammar
    • 6.5 6.5 Simple Precedence Parsing
    • 6.6 6.6 Operator-Precedence Parsing
      • 6.6.1 Lecture 1
      • 6.6.2 Lecture 2
      • 6.6.3 Lecture 3
    • 6.7 6.7 Precedence Functions and Construction
  • 7 Chapter 7  LR Parsing
    • 7.1 7.1 LR Parsers
      • 7.1.1 Lecture 1
      • 7.1.2 Lecture 2
    • 7.2 7.2 Building a LR(0) parse table
      • 7.2.1 Lecture 1
      • 7.2.2 Lecture 2
    • 7.3 7.3 SLR Parse Table Construction
    • 7.4 7.4 Constructing Canonical LR(1) Parsing Tables
    • 7.5 7.5 LALR Parsing Tables Construction
    • 7.6 7.6 Using Ambiguous Grammars
    • 7.7 7.7 Yacc/Bison Overview
  • 8 Chapter 8 Syntax-Directed Translation
    • 8.1 8.1 Syntax-Directed Translation
      • 8.1.1 Lecture1
      • 8.1.2 Lecture 2
      • 8.1.3 Lecture 3
    • 8.2 8.2 Abstract Syntax Tree
    • 8.3 8.3 Intermediate Representation
      • 8.3.1 Lecture 1
      • 8.3.2 Lecture 2
  • 9 Chapter 9 Run-Time Environment
    • 9.1 9.1 Data Area & Attribute
    • 9.2 Section 9.2~9.4 & Section 9.8~9.9
    • 9.3 9.5 Parameter Passing
    • 9.4 9.6 Stack Allocation
    • 9.5 9.7 Heap allocation
  • 10 Chapter 10 Symbol Tables
    • 10.1 10.1 A symbol Table Class
    • 10.2 10.2 Basic Implementation Techniques
    • 10.3 10.3 Block-structured Symbol Table
    • 10.4 10.4 Implicit Declaration
    • 10.5 10.5 Overloading
  • 11 Chapter 11 Code Optimization
    • 11.1 11.1 Control Flow Graph
    • 11.2 11.2 Redundancies
    • 11.3 11.3 Loop Optimizations
    • 11.4 11.4 Instruction Dispatch
      • 11.4.1 Lecture 1
      • 11.4.2 Lecture 2
  • 12 Chapter 12 Code Generation
    • 12.1 12.1 Code generation issues
    • 12.2 12.2 Simple Stack Machine
    • 12.3 12.3 Register Machine
    • 12.4 12.4 A Simple Code Generator
  • 13 13 Extended Reading扩展阅读1 斯坦福大学公开课
    • 13.1 Lecture 1
    • 13.2 Lecture 2
    • 13.3 Lecture 3
    • 13.4 Lecture 4
    • 13.5 Lecture 5
    • 13.6 Lecture 6
    • 13.7 Lecture 7
    • 13.8 Lecture 8
    • 13.9 Lecture 9
    • 13.10 Lecture 10
    • 13.11 Lecture 11
    • 13.12 More sources
  • 14 14 Extended Reading 2 扩展阅读2 illinois.edu lectures
    • 14.1 Lecture 1 Overview
    • 14.2 Lecture 2 Strings, Languages, DFAs
    • 14.3 Lecture 3 More on DFAs
    • 14.4 Lecture 4 Regular Expressions and Product Construction
    • 14.5 Lecture 5 Nondeterministic Automata
    • 14.6 Lecture 6 Closure properties
    • 14.7 Lecture 7 NFAs are equivalent to DFAs
    • 14.8 Lecture 8 From DFAs/NFAs to Regular Expressions
    • 14.9 Lecture 9 Proving non-regularity
    • 14.10 Lecture 10 DFA minimization
    • 14.11 Lecture 11 Context-free grammars
    • 14.12 Lecture 12 Cleaning up CFGs and Chomsky Normal form
    • 14.13 Lecture 13 Even More on Context-Free Grammars
    • 14.14 Lecture 14 Repetition in context free languages
    • 14.15 Lecture 15 CYK Parsing Algorithm
    • 14.16 Lecture 16 Recursive automatas
    • 14.17 Lecture 17 Computability and Turing Machines
    • 14.18 Lecture 18 More on Turing Machines
    • 14.19 Lecture 19 Encoding problems and decidability
    • 14.20 Lecture 20 More decidable problems, and simulating TM and “real” computers
    • 14.21 Lecture 21 Undecidability, halting and diagonalization
    • 14.22 Lecture 22 Reductions
    • 14.23 Lecture 23 Rice Theorem and Turing machine behavior properties
    • 14.24 Lecture 24 Dovetailing and non-deterministic Turing machines
    • 14.25 Lecture 25 Linear Bounded Automata and Undecidability for CFGs
  • 15 15 Extended Reading3 扩展阅读3 Extended  Reference Books
    • 15.1 15.1 English Text Book
    • 15.2 15.2 编译原理(何炎祥,伍春香,王汉飞 2010.04)
    • 15.3 15.3 编译原理(陈光建主编;贾金玲,黎远松,罗玉梅,万新副主编 2013.10)
    • 15.4 15.4 编译原理((美)Alfred V. Aho等著;李建中,姜守旭译 2003.08)
    • 15.5 15.5 编译原理学习与实践指导(金登男主编 2013.11)
    • 15.6 15.6 编译原理及编译程序构造 第2版(薛联凤,秦振松编著 2013.02)
    • 15.7 15.7 编译原理学习指导(莫礼平编 2012.01)
    • 15.8 15.8 JavaScript动态网页开发案例教程
  • 16 16 中文版课件(pdf)辅助学习
    • 16.1 第1章 引论
    • 16.2 第2章 形式语言概论
    • 16.3 第3章 有穷自动机
    • 16.4 第4章 词法分析
    • 16.5 第5章 自上而下分析
    • 16.6 第6章 优先分析方法
    • 16.7 第7章 自下而上的LR(k)分析方法
    • 16.8 第8章 语法制导翻译法
    • 16.9 第9章 运行时的存储组织与管理
    • 16.10 第10章 符号表的组织与查找
    • 16.11 第11章 优化
    • 16.12 第12章 代码生成
  • 17 17 Extended Reading4 扩展阅读4 Static Single Assignment
    • 17.1 17.1 SSA-based Compiler Design
    • 17.2 17.2 A Simple, Fast Dominance Algorithm (Rice Computer Science TR-06-33870)
    • 17.3 17.3 The Development of Static Single Assignment Form(KennethZadeck-Presentation on the History of SSA at the SSA'09 Seminar, Autrans, France, April 2009)
    • 17.4 17.4 SPIR-V Specification(John Kessenich, Google and Boaz Ouriel, Intel Version 1.00, Revision 12 January 16, 2018)
    • 17.5 17.5 Efficiently Computing Static Single Assignment Form and the Control Dependence Graph
    • 17.6 17.6 Global Value Numbers and Redundant Computations
  • 18 18 Extended Reading4 扩展阅读5 Computer Science
    • 18.1 1 实地址模式和保护模式的理解
    • 18.2 2 实模式和保护模式
    • 18.3 3 实模式和保护模式区别及寻址方式
    • 18.4 计算机专业术语
    • 18.5 Bit Math in c Language
    • 18.6 Auto-generating subtitles for any video file
    • 18.7 Autosub
    • 18.8 C语言中的内联函数(inline)与宏定义(#define)
  • 19 19 相关学习
    • 19.1 龙书、鲸书和虎书
    • 19.2 Complexity
    • 19.3 MPC Complexity
    • 19.4 NP-completeness
    • 19.5 Computational complexity theory
  • 20 20 全球战疫-武汉战疫延伸与扩展
    • 20.1 Extraordinary G20 Leaders’ Summit Statement on COVID-19
    • 20.2 Experts urge proactive measures to fight virus
    • 20.3 covid-19病毒下贫穷国家
    • 20.4 正确理解病亡率、压平曲线、疫情高峰术语
    • 20.5 为什么全球经济可能陷入长期衰退
    • 20.6 为何新冠病毒检测会出现“假阴性”
    • 20.7 在纽约,几乎每个人身边都有人感染病毒
    • 20.8 An Address by Her Majesty The Queen
    • 20.9 Boris Johnson admitted to hospital over virus sympto
    • 20.10 Edinburgh festivals cancelled due to coronavirus
    • 20.11 US set to recommend wearing of masks
    • 20.12 Boris Johnson in self-isolation after catching coronavirus
    • 20.13 Covid-19:The porous borders where the virus cannot be controlled
    • 20.14 当欧洲人开始戴上口罩
    • 20.15 Lockdown and ‘Intimate Terrorism’
    • 20.16 Us Election 2020: Bernie Sanders Suspends Presidential Campaign
    • 20.17 The aircraft carrier being infected with the coronavirus
    • 20.18 Spent to the W.H.O.
    • 20.19 Unemployment
    • 20.20 The beat of a heart the glimmer of a soul
    • 20.21 Coronavirus pandemic: EU agrees €500bn rescue package
    • 20.22 the world after coronavirus冠状病毒之后的世界
  • 21 21 课程思政方案
    • 21.1 21.1 课程思政
    • 21.2 21.2 实施方案
Bit Math in c Language

C语言的位运算

(业精于勤,荒于嬉;行成于思,毁于随)

位运算的运算分量只能是整型或字符型数据,位运算把运算对象看作是由二进位组成的位串信息,按位完成指定的运算,得到位串信息的结果。

位运算符有:

&(按位与)、|(按位或)、^(按位异或)、~(按位取反)。

其中,按位取反运算符是单目运算符,其余均为双目运算符。

位运算符的优先级从高到低,依次为~、&、^、|,

其中~的结合方向自右至左,且优先级高于算术运算符,其余运算符的结合方向都是自左至右,且优先级低于关系运算符。

(1)按位与运算符(&)

按位与运算将两个运算分量的对应位按位遵照以下规则进行计算:

0&0=0,0&1=0,1&0=0,1&1=1

即同为1的位,结果为1,否则结果为0。

例如,设3的内部表示为

00000011

5的内部表示为

00000101

则3&5的结果为

00000001

按位与运算有两种典型用法,一是取一个位串信息的某几位,如以下代码截取x的最低7位:x&0177。二是让某变量保留某几位,其余位置0,如以下代码让x只保留最低6位:x=x&077。以上用法都先要设计好一个常数,该常数只有需要的位是1,不需要的位是0。用它与指定的位串信息按位与。

(2)按位或运算符(|)

按位或运算将两个运算分量的对应位按位遵照以下规则进行计算:

0|0=0,0|1=1,1|0=1,1|1=1

即只要有1个是1的位,结果为1,否则为0。

例如,023|035结果为037。

按位或运算的典型用法是将一个位串信息的某几位置成1。如将要获得最右4为1,其他位与变量j的其他位相同,可用逻辑或运算017|j。若要把这结果赋给变量j,可写成:

j=017|j

(3)按位异或运算符(^)

按位异或运算将两个运算分量的对应位按位遵照以下规则进行计算:

0^0=0,0^1=1,1^0=1,1^1=0

即相应位的值相同的,结果为0,不相同的结果为1。

例如,013^035结果为026。

异或运算的意思是求两个运算分量相应位值是否相异,相异的为1,相同的为0。按位异或运算的典型用法是求一个位串信息的某几位信息的反。如欲求整型变量j的最右4位信息的反,用逻辑异或运算017^j,就能求得j最右4位的信息的反,即原来为1的位,结果是0,原来为0的位,结果是1。

(4)按位取反运算符(~)

按位取反运算是单目运算,用来求一个位串信息按位的反,即哪些为0的位,结果是1,而哪些为1的位,结果是0。例如,~7的结果为0xfff8。

取反运算常用来生成与系统实现无关的常数。如要将变量x最低6位置成0,其余位不变,可用代码x=x&~077实现。以上代码与整数x用2个字节还是用4个字节实现无关。

当两个长度不同的数据进行位运算时(例如long型数据与int型数据),将两个运算分量的右端对齐进行位运算。如果短的数为正数,高位用0补满;如果短的数为负数,高位用1补满。如果短的为无符号整数,则高位总是用0补满。

位运算用来对位串信息进行运算,得到位串信息结果。如以下代码能取下整型变量k的位串信息的最右边为1的信息位:((k-1)^k)&k。

移位运算

移位运算用来将整型或字符型数据作为二进位信息串作整体移动。有两个运算符:

<<(左移)和>>(右移)

移位运算是双目运算,有两个运算分量,左分量为移位数据对象,右分量的值为移位位数。移位运算将左运算分量视作由二进位组成的位串信息,对其作向左或向右移位,得到新的位串信息。

移位运算符的优先级低于算术运算符,高于关系运算符,它们的结合方向是自左至右。

(1)左移运算符(<<)

左移运算将一个位串信息向左移指定的位,右端空出的位用0补充。例如014<<2,结果为060,即48。

左移时,空出的右端用0补充,左端移出的位的信息就被丢弃。在二进制数运算中,在信息没有因移动而丢失的情况下,每左移1位相当于乘2。如4<<2,结果为16。

(2)右移运算符(>>)

右移运算将一个位串信息向右移指定的位,右端移出的位的信息被丢弃。例如12>>2,结果为3。与左移相反,对于小整数,每右移1位,相当于除以2。在右移时,需要注意符号位问题。对无符号数据,右移时,左端空出的位用0补充。对于带符号的数据,如果移位前符号位为0(正数),则左端也是用0补充;如果移位前符号位为1(负数),则左端用0或用1补充,取决于计算机系统。对于负数右移,称用0补充的系统为“逻辑右移”,用1补充的系统为“算术右移”。以下代码能说明读者上机的系统所采用的右移方法:

printf("%d\n\n\n",-2>>4);

若输出结果为-1,是采用算术右移;输出结果为一个大整数,则为逻辑右移。

移位运算与位运算结合能实现许多与位串运算有关的复杂计算。设变量的位自右至左顺序编号,自0位至15位,有关指定位的表达式是不超过15的正整数。以下各代码分别有它们右边注释所示的意义:

~(~0<<n)/*实现最低n位为1,其余位为0的位串信息*/

(x>>(1+p-n))&~(~0<<n)/*截取变量x自p位开始的右边n位的信息*/

new|=((old>>row)&1)<<(15–k)/*截取old变量第row位,并将该位信息装配到变量new的第15-k位*/

s&=~(1<<j)/*将变量s的第j位置成0,其余位不变*/

for(j=0;((1<<j)&s)==0;j++);/*设s不等于全0,代码寻找最右边为1的位的序号j*/

!为逻辑取反,表示非的意思,经过它处理后的结果为布尔型,要么为0,要么为1,!x,只要x不为0,1,2,3,都可以,那么!x的结果就是0,只有当x为0时,结果为1。如果*为真,则!*为假,反之如果*为假,则!*为真

 

From: https://www.cnblogs.com/hnrainll/archive/2011/05/27/2059479.html