目录

  • 1 第一章 大数据分析与Python
    • 1.1 课程介绍及考核要求
    • 1.2 课程PPT
    • 1.3 课程相关软件下载
    • 1.4 python模块安装命令
  • 2 第二章 Python基础操作
    • 2.1 学习目标
    • 2.2 课程PPT
    • 2.3 演示代码与数据
  • 3 第三章 Python常用库与可视化
    • 3.1 学习目标
    • 3.2 课程PPT
    • 3.3 演示代码与数据
  • 4 第四章 关联规则分析-Apriori模型
    • 4.1 学习目标
    • 4.2 课程PPT
    • 4.3 演示代码与数据
  • 5 第五章 决策树模型
    • 5.1 学习目标
    • 5.2 课程PPT
    • 5.3 演示代码与数据
  • 6 第六章 贝叶斯模型
    • 6.1 学习目标
    • 6.2 课程PPT
    • 6.3 演示代码与数据
  • 7 第七章 聚类算法
    • 7.1 学习目标
    • 7.2 课程PPT
    • 7.3 补充知识
    • 7.4 演示代码与数据
  • 8 第八章 社会网络分析
    • 8.1 学习目标
    • 8.2 课程PPT
    • 8.3 演示代码与数据
  • 9 第九章 神经网络
    • 9.1 学习目标
    • 9.2 课程PPT
    • 9.3 补充知识
    • 9.4 演示代码与数据
  • 10 第十章 表征学习
    • 10.1 学习目标
    • 10.2 课程PPT
    • 10.3 演示代码与数据
  • 11 第十一章 案例实践
    • 11.1 网络数据抓取
    • 11.2 顾客市场细分
    • 11.3 房地产需求分析
    • 11.4 淘宝用户购物行为分析
    • 11.5 居民幸福感分析
  • 12 拓展及考核安排
    • 12.1 期末考核安排及课程论文模板
    • 12.2 UCI数据集
    • 12.3 阿里天池数据集
    • 12.4 科学数据银行
    • 12.5 更多数据源
    • 12.6 毕业论文资料
居民幸福感分析

数据来源:使用的数据来自中国人民大学中国调查与数据中心主持之《中国综合社会调查(CGSS)》项目。赛题感谢此机构及其人员提供数据协助。中国综合社会调查为多阶分层抽样截面面访调查。

使用公开数据的问卷调查结果,选取其中多组变量,包括个体变量(性别、年龄、地域、职业、健康、婚姻与政治面貌等等)、家庭变量(父母、配偶、子女、家庭资本等等)、社会态度(公平、信用、公共服务等等),来预测其对幸福感的评价分数。