目录

  • 1 第一章 大数据分析与Python
    • 1.1 课程介绍及考核要求
    • 1.2 课程PPT
    • 1.3 课程相关软件下载
    • 1.4 python模块安装命令
  • 2 第二章 Python基础操作
    • 2.1 学习目标
    • 2.2 课程PPT
    • 2.3 演示代码与数据
  • 3 第三章 Python常用库与可视化
    • 3.1 学习目标
    • 3.2 课程PPT
    • 3.3 演示代码与数据
  • 4 第四章 关联规则分析-Apriori模型
    • 4.1 学习目标
    • 4.2 课程PPT
    • 4.3 演示代码与数据
  • 5 第五章 决策树模型
    • 5.1 学习目标
    • 5.2 课程PPT
    • 5.3 演示代码与数据
  • 6 第六章 贝叶斯模型
    • 6.1 学习目标
    • 6.2 课程PPT
    • 6.3 演示代码与数据
  • 7 第七章 聚类算法
    • 7.1 学习目标
    • 7.2 课程PPT
    • 7.3 补充知识
    • 7.4 演示代码与数据
  • 8 第八章 社会网络分析
    • 8.1 学习目标
    • 8.2 课程PPT
    • 8.3 演示代码与数据
  • 9 第九章 神经网络
    • 9.1 学习目标
    • 9.2 课程PPT
    • 9.3 补充知识
    • 9.4 演示代码与数据
  • 10 第十章 表征学习
    • 10.1 学习目标
    • 10.2 课程PPT
    • 10.3 演示代码与数据
  • 11 第十一章 案例实践
    • 11.1 网络数据抓取
    • 11.2 顾客市场细分
    • 11.3 房地产需求分析
    • 11.4 淘宝用户购物行为分析
    • 11.5 居民幸福感分析
  • 12 拓展及考核安排
    • 12.1 期末考核安排及课程论文模板
    • 12.2 UCI数据集
    • 12.3 阿里天池数据集
    • 12.4 科学数据银行
    • 12.5 更多数据源
    • 12.6 毕业论文资料
学习目标

学习目标:

  1. 理解决策树模型的基本原理,包括决策树的结构、如何构建决策树(如特征选择、树的生成和剪枝过程)以及决策树模型的优缺点。

  2.  掌握决策树算法中的关键概念,如信息增益、基尼不纯度等,了解它们如何影响决策树的构建。

  3.  学会使用常见的数据挖掘工具或编程语言(如Python中的scikit-learn库)来实现决策树模型。

  4.  通过案例实战,将决策树模型应用于员工离职预测,学习如何处理实际数据(包括数据清洗、变量选择、模型训练和验证)并构建一个预测模型。

  5.  分析和评估决策树模型在员工离职预测案例中的性能,能够调整模型参数以提高预测准确率,并利用模型结果为人力资源管理提供决策支持。