目录

  • 1 第一章 大数据分析与Python
    • 1.1 课程介绍及考核要求
    • 1.2 课程PPT
    • 1.3 课程相关软件下载
    • 1.4 python模块安装命令
  • 2 第二章 Python基础操作
    • 2.1 学习目标
    • 2.2 课程PPT
    • 2.3 演示代码与数据
  • 3 第三章 Python常用库与可视化
    • 3.1 学习目标
    • 3.2 课程PPT
    • 3.3 演示代码与数据
  • 4 第四章 关联规则分析-Apriori模型
    • 4.1 学习目标
    • 4.2 课程PPT
    • 4.3 演示代码与数据
  • 5 第五章 决策树模型
    • 5.1 学习目标
    • 5.2 课程PPT
    • 5.3 演示代码与数据
  • 6 第六章 贝叶斯模型
    • 6.1 学习目标
    • 6.2 课程PPT
    • 6.3 演示代码与数据
  • 7 第七章 聚类算法
    • 7.1 学习目标
    • 7.2 课程PPT
    • 7.3 补充知识
    • 7.4 演示代码与数据
  • 8 第八章 社会网络分析
    • 8.1 学习目标
    • 8.2 课程PPT
    • 8.3 演示代码与数据
  • 9 第九章 神经网络
    • 9.1 学习目标
    • 9.2 课程PPT
    • 9.3 补充知识
    • 9.4 演示代码与数据
  • 10 第十章 表征学习
    • 10.1 学习目标
    • 10.2 课程PPT
    • 10.3 演示代码与数据
  • 11 第十一章 案例实践
    • 11.1 网络数据抓取
    • 11.2 顾客市场细分
    • 11.3 房地产需求分析
    • 11.4 淘宝用户购物行为分析
    • 11.5 居民幸福感分析
  • 12 拓展及考核安排
    • 12.1 期末考核安排及课程论文模板
    • 12.2 UCI数据集
    • 12.3 阿里天池数据集
    • 12.4 科学数据银行
    • 12.5 更多数据源
    • 12.6 毕业论文资料
学习目标

学习目标:

  1. 理解关联分析的基本概念,包括项目、项目集、支持度、置信度和提升度等关键指标,以及它们在数据挖掘中的意义和作用。

  2.  掌握Apriori算法的原理和过程,能够描述该算法如何在大数据集中发现项目之间的关联规则,并了解其效率和限制。

  3.  学习并应用Apriori算法进行关联规则挖掘,包括使用适当的工具和编程语言来实现算法,并调整参数以优化结果。

  4.  通过综合案例研究,应用关联分析和Apriori算法于中医病症辩证数据,能够独立完成数据预处理、模式发现和关联规则挖掘,并对结果进行分析和解释,从而提取有价值的医学辩证关联规则。