目录

  • 1 GNSS概述
    • 1.1 GPS
    • 1.2 SA&AS
    • 1.3 GNSS
    • 1.4 课间实习
      • 1.4.1 实习1:GPS认识、使用与检测
    • 1.5 课程思政
  • 2 时间系统+坐标系统
    • 2.1 时间系统
    • 2.2 天球坐标系
    • 2.3 地球坐标系
  • 3 GNSS组成与信号结构
    • 3.1 系统组成
    • 3.2 信号结构
  • 4 GNSS误差源
    • 4.1 卫星相关误差
    • 4.2 电离层误差
    • 4.3 对流层误差
    • 4.4 多路径误差
    • 4.5 接收端相关误差
  • 5 GNSS定位原理
    • 5.1 伪距定位原理
    • 5.2 伪距单点定位SPP
    • 5.3 伪距差分定位
    • 5.4 载波相位定位原理
    • 5.5 周跳探测与修复
    • 5.6 整周模糊度确定
    • 5.7 精密单点定位PPP
    • 5.8 载波相位差分定位
    • 5.9 CORS网络RTK定位
    • 5.10 实习2:CORS测量
  • 6 GNSS测量
    • 6.1 GNSS控制网
    • 6.2 GNSS技术设计
    • 6.3 GNSS技术设计书编写
    • 6.4 GNSS测量外业
    • 6.5 外业进度估算
    • 6.6 实习3:静态控制网测量
  • 7 GNSS数据格式
    • 7.1 RINEX
    • 7.2 精密星历
  • 8 GNSS基线解算+网平差
    • 8.1 基线解算
    • 8.2 基线解算质量控制
    • 8.3 GNSS网平差
    • 8.4 GNSS独立坐标系
    • 8.5 GNSS水准
  • 9 GNSS应用
    • 9.1 工程测量
    • 9.2 地壳形变
    • 9.3 GNSS气象
    • 9.4 海洋潮位
    • 9.5 大地测量
    • 9.6 海啸预警
    • 9.7 冰川消融
    • 9.8 GNSS地震
    • 9.9 独立波
    • 9.10 手机应用
    • 9.11 室内定位
  • 10 GNSS数据处理--商用软件
    • 10.1 原始数据
    • 10.2 静态网解算
    • 10.3 实习4:静态控制网数据处理
  • 11 GNSS数据处理--高精度
    • 11.1 IGS
    • 11.2 ITRF
    • 11.3 数据预处理软件
    • 11.4 数据处理软件
    • 11.5 开源软件
    • 11.6 PPK数据处理
    • 11.7 PPP数据处理
    • 11.8 高频数据处理
    • 11.9 Linux系统
  • 12 参考答案
    • 12.1 作业
    • 12.2 考试
    • 12.3 考研
    • 12.4 答疑FAQ
海洋潮位

潮位监测
       利用PBO研究地球水循环

安装浮标

GPS海平面变化

以下节选自 Kristine M Larson

(https://www.kristinelarson.net/portfolio/measuring-water-levels-with-gps/)

GPS signals will reflect off water surfaces.  Unlike soil moisture and snow depth, which varies most dynamically only on the day that it rains or snows, water levels can vary quite a bit during the day.  This adds a bit of complexity for using the GPS Interferometric Reflectometry (GPS-IR) technique to measure tidal variations. On the plus side, if you are using GPS-IR, then you are simultaneously measuring the location of the GPS antenna in the International Terrestrial Reference Frame, which allows you to correct for any ground motion or monument instability.

tidegauge-dropped

The effect of varying water levels is shown in this cartoon – reflections from 4 meters below the antenna are lower frequency than reflections from 7 meters.

GPS-IR was first demonstrated at GPS sites at Onsala (Sweden), Friday Harbor (Washington),  and Peterson Bay (Alaska). Shown below are some results from the Peterson Bay effort.  More details are available from the 2013 IEEE GRSL paper.

pbay_fig3

Photos of the Peterson Bay GPS site at low and high tide. Photo credit: Clara Chew.

peterson

Water levels measured by NOAA (at Seldovia) and GPS (Peterson Bay).

 

tide_new

Tidal coefficients show good agreement between the “real” tide gauge and GPS.

 

monthly

Comparison of monthly averages for GPS (blue) and NOAA (red).

 Most recently I have been working with Richard Ray (Goddard Space Flight Center) and Simon Williams (National Oceanography Centre) to analyze a 10-year time series from Friday Harbor, Washington. Although the newer L2C signals are not available over this time period, the less precise L1 data are.  As shown here, the GPS water level estimates are very consistent with the tide gauge. The Friday Harbor GPS site -SC02 – is operated by UNAVCO for the EarthScope Plate Boundary Observatory.  NOAA operates the tide gauge. See my publications page for the refereed publication.