一、教学目标
1.了解核酸在体内的分解概况;
2.掌握两种核苷酸的分解和生物合成途径及其调节
3.了解其他核苷酸的分解生物合成途径。
二、教学重点
1.嘌呤核苷酸的分解途径和生物合成
2.嘧啶核苷酸的分解途径和生物合成
三、教学难点
1.嘌呤核苷酸的分解途径和生物合成
2. 嘧啶核苷酸的分解途径和生物合成
嘌呤核苷酸的代谢
一、核酸的酶促降解
核酸是核苷酸以3’、5’-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。
根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。
根据酶的作用方式分:内切酶、外切酶。
二、核苷酸的降解
1、核苷酸酶 (磷酸单脂酶)
水解核苷酸,产生核苷和磷酸。
非特异性磷酸单酯酶:不论磷酸基在戊糖的2’、3’、5’,都能水解下来。
特异性磷酸单酯酶: 只能水解3’核苷酸或5’核苷酸(3’核苷酸酶、5’核苷酸酶)
2、核苷酶
两种:
① 核苷磷酸化酶:广泛存在,反应可逆。


使原来α-构型的核糖转化成β构型
(2)甘氨酰胺核苷酸合成酶
5-磷酸核糖胺+Gly+ATP → 甘氨酰胺核苷酸+ADP+Pi
(3)甘氨酰胺核苷酸转甲酰基酶
甘氨酰胺核苷酸 + N 5 N 10-甲川FH4 + H2O → 甲酰甘氨酰胺核苷酸 + FH4
甲川基可由甲酸或氨基酸供给。
(4)甲酰甘氨脒核苷酸合成酶
甲酰甘氨酰胺核苷酸 + Gln + ATP + H2O → 甲酰甘氨脒核苷酸 + Glu + ADP + pi
此步反应受重氮丝氨酸和6-重氮-5-氧-正亮氨酸不可逆抑制,这两种抗菌素与Gln有类似结构。
P 304 结构式:重氮丝氨酸、6-重氮-5-氧-正亮氨酸
(5)氨基咪唑核苷酸合成酶
甲酰甘氨脒核苷酸 + ATP → 5-氨基咪唑核苷酸 + ADP + Pi
(1)~(5)第一阶段,合成第一个环
(6)氨基咪唑核苷酸羧化酶
5-氨基咪唑核苷酸+CO2 → 5-氨基咪唑-4羧酸核苷酸
(7)氨基咪唑琥珀基氨甲酰核苷酸合成酶
5-氨基咪唑-4-羧酸核苷酸+Asp+ATP → 5-氨基咪唑4-(N-琥珀基)氨甲酰核苷酸
(8)腺苷酸琥珀酸裂解酶
5-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸 → 5-氨基咪唑-4-氨甲酰核苷酸+延胡索酸
(9)氨基咪唑氨甲酰核苷酸转甲酰基酶
5-氨基咪唑-4-氨甲酰核苷酸+N10-甲酰FH4 → 5-甲酰胺基咪唑-4-氨甲酰核苷酸+FH4
(10)次黄嘌呤核苷酸环水解酶
5-甲酰胺基咪唑-4-氨甲酰核苷酸 → 次黄嘌呤核苷酸+H2O
总反应式:
5-磷酸核糖 + CO2 + 甲川THFA + 甲酰THFA + 2Gln + Gly + Asp + 5ATP →
IMP + 2THFA + 2Glu + 延胡索酸 + 4ADP + 1AMP + 4Pi + PPi
3、腺嘌呤核苷酸的合成(AMP)
腺嘌呤核苷酸的合成

4、AMP、GMP生物合成的调节
5-磷酸核糖焦磷酸转酰胺酶是关键酶,可被终产物AMP、GMP反馈抑制。
AMP过量可反馈抑制自身的合成。
GMP过量可反馈抑制自身的合成。
5、药物对嘌呤核苷酸合成的影响
筛选抗肿瘤药物,肿瘤细胞核酸合成速度快,药物能抑制。
①羽田杀菌素
与Asp竞争腺苷酸琥珀酸合成酶,阻止次黄嘌呤核苷酸转化成AMP。
②重氮乙酰丝氨酸、6-重氮-5-氧正亮氨酸,是Gln的结构类似物,抑制Gln参与的反应。
③氨基蝶呤、氨甲蝶呤
叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,阻止FH4的生成,从而抑制FH4参与的各种一碳单位转移反应。
三、补救途径
利用已有的碱基和核苷合成核苷酸
磷酸核糖转移酶途径(重要途径)
嘌呤碱和5-PRPP在特异的磷酸核糖转移酶的作用下生成嘌呤核苷酸

嘌呤核苷酸的从头合成与补救途径之间存在平衡。Lesch-Nyan综合症就是由于次黄嘌呤:鸟嘌呤磷酸核糖转移酶缺陷,AMP合成增加,大量积累尿酸,肾结石和痛风。
四、嘌呤碱的分解
首先在各种脱氨酶的作用下水解脱氨,脱氨反应可发生在嘌呤碱、核苷及核苷酸水平上。
不同种类的生物分解嘌呤碱的能力不同,因此,终产物也不同。
排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类
排尿囊素动物:哺乳动物(灵长类除外)、腹足类
排尿囊酸动物:硬骨鱼类
排尿素动物:大多数鱼类、两栖类
某些低等动物能将尿素进一步分解成NH3和CO2排出。
植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3)。
微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲酸、乙酸、乳酸、等)。
扩展阅读