目录

  • 1 绪论
    • 1.1 生物化学的定义与研究内容
    • 1.2 生物化学的内容组成
    • 1.3 生物化学的形成与发展
    • 1.4 生物化学与专业的关系
  • 2 蛋白质的化学
    • 2.1 概述
    • 2.2 蛋白质总论
    • 2.3 氨基酸的分类与物理性质
    • 2.4 蛋白质的构件——氨基酸
    • 2.5 肽
    • 2.6 蛋白质的结构
    • 2.7 蛋白质的结构与功能
    • 2.8 蛋白质的分离纯化
    • 2.9 蛋白质的性质与分离纯化
    • 2.10 蛋白质的鉴定与分析
    • 2.11 肌红蛋白与血红蛋白
    • 2.12 测验1氨基酸组成、结构与性质
    • 2.13 测验2 肽、蛋白质的结构和功能
    • 2.14 测验3 蛋白质的理化性质
  • 3 核酸化学
    • 3.1 DNA是遗传物质的发现
    • 3.2 概述
    • 3.3 核酸分子的化学组成
    • 3.4 DNA的结构
    • 3.5 tRNA结构
    • 3.6 核酸的分子结构
    • 3.7 核酸的理化性质
    • 3.8 核酸的变性、复性与分子杂交
    • 3.9 核酸的分离、纯化与鉴定
    • 3.10 训练4 核酸的组成、结构基础练习
    • 3.11 训练5 核酸的性质基础练习
  • 4 糖类化学
    • 4.1 第五次拓展训练
  • 5 脂类化学
    • 5.1 脂类概述
    • 5.2 单脂
    • 5.3 复脂
    • 5.4 类脂
    • 5.5 第六次拓展训练
  • 6 酶与维生素
    • 6.1 概述
    • 6.2 酶的分类及命名
    • 6.3 酶的结构
    • 6.4 酶的结构与功能
    • 6.5 酶的作用机理
    • 6.6 酶的高效性机制
    • 6.7 诱导契合学说
    • 6.8 酶促反应动力学
    • 6.9 训练6 酶概述部分基础练习
    • 6.10 训练7 酶组成、结构、作用机理基础练习
    • 6.11 训练8 酶促动力学基础练习
  • 7 生物氧化
    • 7.1 概述
    • 7.2 生物氧化的特点
    • 7.3 生物氧化体系——呼吸链
    • 7.4 ATP的生成方式
    • 7.5 化学渗透假说
    • 7.6 氧化磷酸化的抑制
    • 7.7 线粒体的穿梭系统
    • 7.8 训练9 生物氧化的特点、呼吸链的组成及功能基础练习
    • 7.9 训练10 ATP的生成方式、机理及抑制基础练习
  • 8 糖代谢
    • 8.1 糖原的降解
    • 8.2 葡萄糖的分解代谢
    • 8.3 糖酵解
    • 8.4 糖有氧氧化
    • 8.5 三羧酸循环
    • 8.6 糖有氧氧化的能量计算
    • 8.7 磷酸戊糖途径
    • 8.8 糖异生
    • 8.9 寡糖和多糖的合成
    • 8.10 葡萄糖的合解代谢
    • 8.11 糖代谢的调节
    • 8.12 训练11 多糖降解、糖酵解途径基础练习
    • 8.13 训练12 糖的有氧氧化、磷酸戊糖途径基础练习
    • 8.14 训练13 糖异生途径、糖的合成基础练习
  • 9 脂类代谢
    • 9.1 脂类的贮存、动员与运输
    • 9.2 脂肪的代谢
    • 9.3 脂肪酸氧化
    • 9.4 脂肪酸氧化的能量计算
    • 9.5 酮体的生成与利用
    • 9.6 乙醛酸循环
    • 9.7 脂肪的合成
    • 9.8 磷脂的代谢
    • 9.9 胆固醇代谢
    • 9.10 吉林省教学名师常桂英教授教学视频
    • 9.11 训练14脂肪降解、脂肪酸分解代谢
    • 9.12 训练15 脂肪酸的合成、磷脂、胆固醇的代谢基础练习
  • 10 蛋白质与氨基酸代谢
    • 10.1 氨基酸的一般代谢
    • 10.2 氨的代谢——鸟氨酸循环
    • 10.3 鸟氨酸循环
    • 10.4 氨的转运
    • 10.5 氨基酸的化学反应
    • 10.6 芳香族氨基酸的代谢
    • 10.7 氨基酸的合成代谢
    • 10.8 个别氨基酸的分解代谢
    • 10.9 嘧啶的分解代谢
    • 10.10 训练16蛋白质降解、氨基酸分解代谢基础练习
    • 10.11 训练17 鸟氨酸循环、个别氨基酸分解代谢基础练习
  • 11 核苷酸代谢
    • 11.1 概述
    • 11.2 核苷酸的降解
    • 11.3 嘌呤的分解代谢
    • 11.4 嘌呤核苷酸的合成代谢
    • 11.5 嘌呤核苷酸的从头合成
    • 11.6 嘧啶核糖核苷酸的生物合成
    • 11.7 核苷酸合成的抗代谢物
    • 11.8 脱氧核糖核苷酸和胸苷酸的生成
    • 11.9 训练18 核苷酸的分解、合成代谢基础练习
  • 12 DNA生物合成——复制
    • 12.1 概述
    • 12.2 DNA复制的过程
    • 12.3 半保留复制的发现
    • 12.4 DNA的半保留复制
    • 12.5 参与DNA的复制的酶与蛋白质
    • 12.6 原核生物(大肠杆菌)DNA的复制过程
    • 12.7 真核生物DNA复制
    • 12.8 逆转录 (RNA指导的DNA合成)
    • 12.9 基因突变和DNA的损伤修复
    • 12.10 PCR反应过程
    • 12.11 端粒的复制
    • 12.12 DNA的损伤修复
    • 12.13 训练19 参与DNA合成的酶及过程基础练习
    • 12.14 训练20 逆转录、DNA损伤和修复基础练习
  • 13 RNA 生物合成——转录
    • 13.1 RNA聚合酶
    • 13.2 原核生物的转录
    • 13.3 启动子
    • 13.4 转录的过程
    • 13.5 转录终止机制
    • 13.6 转录后加工
    • 13.7 真核生物的转录
    • 13.8 真核生物的转录后修饰
    • 13.9 训练21 RNA生物合成基础练习
  • 14 蛋白质的生物合成——翻译
    • 14.1 概述
    • 14.2 蛋白质合成体系的组分
    • 14.3 遗传密码的特性
    • 14.4 rRNA与蛋白质合成场所
    • 14.5 蛋白质生物合成过程(原核生物)
    • 14.6 翻译的过程
    • 14.7 肽链合成后的加工
    • 14.8 代谢调节
    • 14.9 蛋白质生物合成的干扰与抑制
    • 14.10 训练22 蛋白质生物合成基础练习
    • 14.11 第二十五次训练  蛋白质合成过程
  • 15 基因表达的调控
    • 15.1 乳糖操纵子
    • 15.2 色氨酸操纵子
    • 15.3 第二十六次训练  物质代谢调节及基因表达调节
  • 16 综合训练
    • 16.1 第二十七次训练  综合训练一
    • 16.2 第二十八次训练  综合训练二
    • 16.3 第二十九次训练  综合训练三
    • 16.4 第三十次训练    综合训练四
  • 17 实验视频
    • 17.1 胰蛋白酶比活力的测定
    • 17.2 离心机的使用
    • 17.3 移液管的使用
    • 17.4 紫外分光光度计的使用
    • 17.5 血清γ球蛋白的分离纯化与鉴定
    • 17.6 血清白蛋白的分离纯化与鉴定
启动子


一、转录单元(transcription unit) 

转录单元(transcription unit):RNA链的转录起始于DNA模板的一个特定起点(启动子),并在一终(转录单位) 点处(终止子)终止,此转录区域称为转录单位。一个转录单位可是一 个基因,也可是多个基因。

启动子(promoter) :指RNA聚合酶识别﹑结合和开始转录的一段DNA序列。其确保转录精确有效地起始。

启动子是一段位于结构基因5’端上游区的保守的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。

二、启动子与转录起始

大肠杆菌RNA聚合酶与启动子的相互作用主要包括:

 1.启动子区的识别;

 2.酶与启动子的结合;

 3.σ因子的结合与解离。

三、原核生物的启动子

  1. -10区(Pribnow区)的发现



2.-10序列 (Pribnow框盒)

如果把Pribnow区从TATAAT变成AATAAT就会使该启动子发生下降突变(down mutation);

如果增加Pribnow区的共同序列,将乳糖操纵子的启动子中的TATGTT变成TATATT,就会提高启动子的效率,称为上升突变(up mutation)。




3.-35区的发现


 科学家又从噬菌体的左、右启动子PL及PR和SV40启动子的–35 bp附近找到了另一段共同序列:TTGACA。

 4.-35序列 (Sextama盒)

其保守序列为TTGACA,

与-10序列相隔16-19bp。

 功能:

    (1)为RNA pol的识别位点。

    (2)RNA Pol的核心酶只能起到和模板结合和催化的功能,并不能识别-35序列,只有σ亚基才能识别-35序列,为转录选择模板链。

5.100个E.coli的不同启动子的序列测定结果

             –35区                             –10区

……T85T83G81A61C69A52……T89A89T50A65A100……

大部分启动子都存在这两段共同序列,即位于–10 bp处的TATA区和–35 bp处的TTGACA区。

它们是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力。 

6.-10区和-35区的间隔序列



7.Some stronger bacterial promoter



(1)结构典型,都含有识别(R),结合(B)和起始(I)三个位点;

(2)序列保守,如-35序列,-10序列结构都十分保守;

(3)位置和距离都比较恒定;

(4)直接和多聚酶相结合;

(5)常和操纵子相邻;

(6)都在其控制基因的5′端;

(7)决定转录的启动和方向。

原核生物启动子 的共同的特点

四、真核生物的启动子


  1. 真核基因的启动子

2.真核生物启动子对转录的影响


 (1)TATA区--使转录精确地起始:

如果除去TATA区或进行碱基突变,转录产物下降的相对值不如CAAT区或GC区突变后明显,但发现所获得的RNA产物起始点不固定。

(2)CAAT区和GC区主要控制转录起始频率:基本不参与起始位点的确定。



研究SV40晚期基因启动子发现,上游激活区的存在与否,对该启动子的生物活性有着根本性的影响。若将该基因5' 上游–21~–47核苷酸序列切除,基因完全不表达。

远端调控区 

增强子(enhancer)

1981年由研究人员发现,又称远上游序列(far upstream sequence)。

增强子(enhancer 或称强化子):一种能强化转录起始的序列,其不是启动子的一部分,但能促进转录起始,除去之则基因转录水平大大降低。

增强子很可能通过影响染色质DNA-蛋白质结构或改变超螺旋的密度而改变模板的整体结构,从而使得RNA聚合酶更容易与模板DNA相结合,起始基因转录。

3.增强子特点

① 具有远距离效应。

     常在上游-200bp处,但可增强远处启动子的转录,即使相距十几Kb也能发挥其作用;

② 无方向性。

     无论在靶基因的上游,下游或内部都可发挥增强转录的作用;

③ 顺式调节。

     只调节位于同一染色体上的靶基因,而对其它染色体上的基因无作用;

④ 无物种和基因的特异性,

     可以接到异源基因上发挥作用;

⑤ 具有组织的特异性。

      SV40的增强子在3T3细胞中比多瘤病毒的增强子要弱,但在HeLa细胞中SV40的增强子比多瘤病毒的要强5倍。增强子的效应需特定的蛋白质因子参与。

⑥ 有相位性。其作用和DNA的构象有关。

⑦ 有的增强子可以对外部信号产生反应。

     如热体克基因在高温下才表达。编码重金属蛋白的金属硫蛋白基因在镉和锌存在下才表达。某些增强子可以被固醇类激素所激活。 

4.真核生物的启动子特点 


(1)有多种元件:TATA框,GC框,CATT框,OCT等;

(2)结构不恒定。有的有多种框盒,如组蛋白H2B;有的只有TATA框和GC框,如SV40早期转录蛋白;

(3)它们的位置、序列、距离和方向都不完全相同;

(4)有的有远距离的调控元件存在,如增强子;

(5)这些元件常常起到控制转录效率和选择起始位点的作用;

(6)不直接和RNA pol结合。转录时先和其它转录激活因子相结合,再和聚合酶结合。