目录

  • 1 区块链行业与职业
    • 1.1 区块链行业
      • 1.1.1 2020全球区块链产业应用与人才培养报告
      • 1.1.2 区块链行业人才需求解读(高职版)
      • 1.1.3 区块链应用操作员国家职业技术技能标准
      • 1.1.4 区块链职业技能标准及1+X 证书
      • 1.1.5 20220830 区块链2班授课视频1
      • 1.1.6 20220830 区块链2班腾讯会议
      • 1.1.7 20220830 区块链1班腾讯会议视频
    • 1.2 区块链应用软件开发与运维职业技能等级
      • 1.2.1 职业技能等级标准
      • 1.2.2 腾讯教材(初级)
      • 1.2.3 腾讯教材(中级)
      • 1.2.4 腾讯教材(高级)
      • 1.2.5 20220906 区块链1班腾讯会议视频
    • 1.3 区块链专业简介
      • 1.3.1 高职专科
      • 1.3.2 高职本科
  • 2 区块链基础
    • 2.1 区块链概述
      • 2.1.1 区块链实用型技能树
      • 2.1.2 什么是区块链
      • 2.1.3 区块链起源和发展
      • 2.1.4 分布式系统概论
      • 2.1.5 20220906 区块链1班腾讯会议视频
    • 2.2 remix 开发环境搭建
    • 2.3 访问智谷星图的remix环境
    • 2.4 FISCO BCOS入门
      • 2.4.1 FISCO BCOS环境搭建
      • 2.4.2 WeBase环境搭建
      • 2.4.3 Webase智能合约管理
    • 2.5 毕业啦项目介绍
    • 2.6 智能合约初探
    • 2.7 深入浅出solidity
  • 3 区块链咨询
    • 3.1 区块链组成原理
      • 3.1.1 20220906 区块链2班手机录像
      • 3.1.2 20220906 区块链2班腾讯会议视频
    • 3.2 智能合约
      • 3.2.1 20220906 区块链2班腾讯会议视频
      • 3.2.2 20220906 区块链2班手机录像
    • 3.3 区块链电子发票
      • 3.3.1 20220907 区块链1班腾讯视频
      • 3.3.2 20220907 区块链2班腾讯会议视频
    • 3.4 区块链跨境支付
      • 3.4.1 20220907 区块链1班腾讯视频
      • 3.4.2 20220907 区块链2班腾讯会议视频
      • 3.4.3 20220912 区块链2班腾讯会议视频
    • 3.5 区块链供应链金融
      • 3.5.1 20220907 区块链1班腾讯视频
    • 3.6 区块链国际贸易
      • 3.6.1 20220907 区块链1班腾讯视频
  • 4 solidity基础
    • 4.1 第一个solidity程序
      • 4.1.1 20220912 21级2班腾讯会议视频
      • 4.1.2 20220912 21级2班手机视频
      • 4.1.3 20220914 21级1班手机录像
      • 4.1.4 20220914 21级1班腾讯会议视频
    • 4.2 数据类型
      • 4.2.1 20220912 21级2班腾讯会议视频
      • 4.2.2 20220912 21级2班手机视频
      • 4.2.3 20220914 21级1班腾讯会议视频
    • 4.3 变量和运算符
      • 4.3.1 20220920 21级2班腾讯会议视频
      • 4.3.2 20220920 21级2班腾讯会议视频
      • 4.3.3 20220920 21级1班腾讯会议视频
      • 4.3.4 20220920 21级1班手机录像
      • 4.3.5 20220920 21级1班手机录像
    • 4.4 循环语句
    • 4.5 条件语句
    • 4.6 数据存储类型
      • 4.6.1 20220920 21级2班腾讯会议视频
      • 4.6.2 20220920 21级1班腾讯会议
      • 4.6.3 20220920 21级1班手机录像
    • 4.7 结构体
      • 4.7.1 20220920 21级1班腾讯会视频
      • 4.7.2 20220920 21级1班手机录像
      • 4.7.3 20220921 21级2班手机录像
      • 4.7.4 20220921 21级2班腾讯会议视频
    • 4.8 数组
      • 4.8.1 20220921 21级1班手机录像
      • 4.8.2 20220921 21级1班腾讯会议视频
      • 4.8.3 20220927 21级2班腾讯会议视频
      • 4.8.4 20220927 21级2班手机录像
    • 4.9 枚举
    • 4.10 20220921 21级1班手机录像
    • 4.11 20220921 21级1班腾讯会议视频
    • 4.12 映射
    • 4.13 Solidity中的单位
    • 4.14 20220927 21级2班腾讯会议视频
    • 4.15 20220927 21级2班手机录像
    • 4.16 20220927 21级1班腾讯会议视频
    • 4.17 20220927 21级1班手机录像
    • 4.18 函数
      • 4.18.1 20220927 21级1班腾讯会议视频
      • 4.18.2 20220927 21级1班手机录像
    • 4.19 函数修饰符
    • 4.20 变量作用域和函数可见性
    • 4.21 状态可变性
  • 5 solidity进阶
    • 5.1 构造函数
    • 5.2 函数重载
    • 5.3 抽象合约
    • 5.4 库
    • 5.5 接口
    • 5.6 加密函数和数学函数
    • 5.7 合约继承
    • 5.8 错误处理
    • 5.9 事件
      • 5.9.1 2022.11.02 区块链1班腾讯会议视频
    • 5.10 类型转换
      • 5.10.1 2022.11.02 区块链1班腾讯会议视频
      • 5.10.2 2022.11.02 区块链2班腾讯会议视频
    • 5.11 回退函数
      • 5.11.1 2022.11.08 区块链2班腾讯会议视频
    • 5.12 转账方式
      • 5.12.1 2022.11.08 区块链2班腾讯会议视频
      • 5.12.2 2022.11.08 区块链1班 腾讯会议视频
    • 5.13 实践代码
  • 6 智能合约游戏案例初阶
    • 6.1 合约
    • 6.2 整形和状态变量
    • 6.3 算数运算符
    • 6.4 结构体和字符串
    • 6.5 数组
    • 6.6 函数1
    • 6.7 函数2
    • 6.8 函数3
    • 6.9 类型转换
    • 6.10 事件
    • 6.11 地址类型、映射
    • 6.12 全局变量
    • 6.13 异常处理
    • 6.14 引入与继承
    • 6.15 数据位置
    • 6.16 函数可见性1
    • 6.17 函数可见性2
    • 6.18 接口1
    • 6.19 接口2
    • 6.20 接口3
    • 6.21 条件语句
  • 7 智能合约游戏案例进阶
    • 7.1 智能合约的不可更改性
    • 7.2 合约的“所有权”和权限控制
    • 7.3 函数修饰符 onlyOwner
    • 7.4 时间单位
    • 7.5 区块宠物间隔周期
    • 7.6 函数修饰符-公有函数和安全性
    • 7.7 函数修饰符-带参数的函数修饰符
    • 7.8 函数修饰符-自定义函数修饰符
    • 7.9 燃料gas
    • 7.10 gas-使用view节约gas
    • 7.11 gas-存储非常昂贵
    • 7.12 gas-for循环减少写入
    • 7.13 可支付
    • 7.14 体现和转账
    • 7.15 宠物大乐斗
    • 7.16 生成随机数
    • 7.17 宠物大乐斗流程
    • 7.18 重构通用逻辑
    • 7.19 更多重构
    • 7.20 排行榜-斗舞逻辑
    • 7.21 宠物舞技排行榜
    • 7.22 宠物胜利判断
    • 7.23 宠物失败判断
  • 8 区块链企业项目
    • 8.1 项目背景
    • 8.2 企业智能合约应用
    • 8.3 功能实现上
    • 8.4 功能实现下
    • 8.5 功能实现下代码续
    • 8.6 毕业证系统的solidity代码
  • 9 solidity语法详解
    • 9.1 源文件映射
    • 9.2 特殊特性(Esoteric Features)
    • 9.3 新建目录
    • 9.4 内部机制
    • 9.5 调用数据的布局(Layout of CallData)
    • 9.6 内存变量的布局(Layout in Memory)
    • 9.7 状态变量的存储模型(Layout of State Variables in Storage)
    • 9.8 独立的汇编语言
    • 9.9 Solidity Assembly
    • 9.10 库(Libraries)
    • 9.11 接口
    • 9.12 抽象合约(Abstract Contracts)
    • 9.13 继承(Inheritance)
    • 9.14 事件(Events)
    • 9.15 回退函数(fallback function)
    • 9.16 常量(constant state variables)
    • 9.17 新建目录
    • 9.18 函数修改器(Function Modifiers)
    • 9.19 访问函数(Getter Functions)
    • 9.20 可见性或权限控制(Visibility And Accessors)
    • 9.21 合约
    • 9.22 内联汇编(Inline Assembly)
    • 9.23 异常(Excepions)
    • 9.24 作用范围和声明(Scoping And Decarations)
    • 9.25 赋值(Assignment)
    • 9.26 表达式的执行顺序(Order of Evaluation of Expressions)
    • 9.27 创建合约实例(Creating Contracts via `new`)
    • 9.28 函数调用(Function Calls)
    • 9.29 新建目录
    • 9.30 控制结构
    • 9.31 入参和出参(Input Parameters and Output Parameters)
    • 9.32 地址相关(Address Related)
    • 9.33 数学和加密函数(Mathematical and Cryptographic Functions)
    • 9.34 特殊变量及函数(Special Variables and Functions)
    • 9.35 时间单位(Time Units)
    • 9.36 货币单位(Ether Units)
    • 9.37 类型推断(Type Deduction)
    • 9.38 基本类型间的转换
    • 9.39 左值的相关运算符
    • 9.40 映射/字典(mappings)
    • 9.41 结构体(struct)
    • 9.42 数组
    • 9.43 数据位置(Data location)
    • 9.44 引用类型(Reference Types)
    • 9.45 函数(Function Types)
    • 9.46 枚举
    • 9.47 六进制字面量
    • 9.48 字符串(String literal)
    • 9.49 小数
    • 9.50 字节数组(byte arrays)
    • 9.51 地址(Address)
    • 9.52 整型(Integer)
    • 9.53 布尔(Booleans)
    • 9.54 值类型与引用类型
    • 9.55 智能合约源文件的基本要素概览(Structure of a Contract)
    • 9.56 Solidity智能合约文件结构
    • 9.57 solidity中的特殊函数
    • 9.58 新建目录
    • 9.59 新建目录
  • 10 springboot vue前端后端分离项目
    • 10.1 创建springboot 动态页面 和api
    • 10.2 创建vue项目
    • 10.3 编写vue前端页面访问api
内部机制

内部机制 - 清理变量(Internals - Cleaning Up Variables)

当一个值占用的位数小于32字节时,那些没有用到的位必须被清除掉。Solidity编译器设计实现为,在任何可能受到潜在的残存数据带来的副作用之前,清理掉这些脏数据。比如,在向内存写入一个值前,不需要的字节位需要被清除掉,因为没有用到的内存位可能被用来计算哈希,或作为消息调用的发送的数据存储。同样的,在向storage中存储时,未用到的字节位需要被清理掉,否则这些脏数据会带来意想不到的事情。

另一方面,如果接下来的后述操作不会产生副作用,我们不会主动清理这些字节位。比如,由于任何非0的值被JUMP指令认为是true。在它作用JUMPI指令的条件前,我们在不会清理这个布尔值。

在上述设计准则之外,Solidity编译器会在输入数据加载到栈上后清理掉它们。

不同的类型,有不同的无效值的清理规则。

类型有效值无效值意味着
有n的成员的枚举类型0到(n - 1)异常(exception)
布尔0或11
有符号整数sign-extended word当前静默的包装了结果,以后会以异常的形式抛出来
无符号整数高位节是0当前静默的包装了结果,以后会以异常的形式抛出来

内部机制 - 优化(Internals - The Optimizer)

Solidity是基于汇编优化的,所以它可以,同时也被其它编程语言所使用(译者注:其它语言编译为汇编)。编译器会在JUMPJUMPDEST处拆分基本的指令序列为一个个的基本块。在这些代码块内,所有的指令都被分析。所有的对栈,内存或存储的操作被记录成由指令及其参数组成的一个个表达式,这些表达式又会指向另一个表达式。核心目的是找到一些表达式在任何输入的情况下都恒等,然后将它们组合成一个表达式类。优化器首先尝试在一系列已知的表达式中,找出来一些全新的表达式。如果找不到,表达式通过一些简单的原则进行简化,比如 constant + constant = sum_of_constants 或 X * 1 = X。由于这一切是递归进行的,我们可以在第二项是一个更复杂的表达时,应用上述后续规则。对内存或存储的修改,存储的位置经常会被擦除,由此我们并不知道存的数据有什么不同:如果我们首先写入一个值x,再写入另一个值y,这两个都是输入变量,第二个写入时会覆盖第一个,所以我们实际在写入第二个值时,不知道第一个值是什么了。所以,如果一个简单的表达式x-y指向一个非0的常量,这样我们就能在操作y时知道x内存储的值。

在流程最后,我们知道哪一个表达式会在栈顶,并且有一系列的对内存或存储的修改。这些信息与基本的块存在一起以方便的用来连接他们。此外,关于栈,存储和内存配置的信息会传递到下一个块。如果我们知道所有JUMP和JUMPI指令的目标,我们可以构建程序的完整的控制流程图。如果有任何一个我们不知道目标的跳转(因为目标是通过输入参数进行计算的,所以原则上可能发生),我们必须擦除块知识的输入,因为他有可能是某个跳转的目的地(译者注:因为可能某个跳转在运行时会指向他,修改他的状态,所以他的推算状态是错误的)。如果某个JUMPI被发现他的条件是常量,它会被转化为一个无状态的跳转。

在最后一步,每个块中的代码都将重新生成。在某个块结束时,将生成栈上表达式的依赖树,不在这个树上的操作就被丢弃了。在我们原始代码中想要应用的对内存、存储想要的修改顺序的代码就生成出来了(被丢弃的修改被认为是完全不需要的),最终,生成了所有的需要在栈上存在的值。

这些步骤应用于每个基本的块,如果新生成的代码更小,将会替换现有的代码。如果一个块在分析期间在JUMPI处分裂,条件被证实为一个常量,JUMPI将可以基于常量值被替换掉,比如下述代码:

var x = 7;
data[7] = 9;
if (data[x] != x + 2)
  return 2;
else
  return 1;

简化的代码可以被编译为:

data[7] = 9;
return 1;

尽管上述代码在一开始有一个跳转指令。