目录

  • 1 区块链行业与职业
    • 1.1 区块链行业
      • 1.1.1 2020全球区块链产业应用与人才培养报告
      • 1.1.2 区块链行业人才需求解读(高职版)
      • 1.1.3 区块链应用操作员国家职业技术技能标准
      • 1.1.4 区块链职业技能标准及1+X 证书
      • 1.1.5 20220830 区块链2班授课视频1
      • 1.1.6 20220830 区块链2班腾讯会议
      • 1.1.7 20220830 区块链1班腾讯会议视频
    • 1.2 区块链应用软件开发与运维职业技能等级
      • 1.2.1 职业技能等级标准
      • 1.2.2 腾讯教材(初级)
      • 1.2.3 腾讯教材(中级)
      • 1.2.4 腾讯教材(高级)
      • 1.2.5 20220906 区块链1班腾讯会议视频
    • 1.3 区块链专业简介
      • 1.3.1 高职专科
      • 1.3.2 高职本科
  • 2 区块链基础
    • 2.1 区块链概述
      • 2.1.1 区块链实用型技能树
      • 2.1.2 什么是区块链
      • 2.1.3 区块链起源和发展
      • 2.1.4 分布式系统概论
      • 2.1.5 20220906 区块链1班腾讯会议视频
    • 2.2 remix 开发环境搭建
    • 2.3 访问智谷星图的remix环境
    • 2.4 FISCO BCOS入门
      • 2.4.1 FISCO BCOS环境搭建
      • 2.4.2 WeBase环境搭建
      • 2.4.3 Webase智能合约管理
    • 2.5 毕业啦项目介绍
    • 2.6 智能合约初探
    • 2.7 深入浅出solidity
  • 3 区块链咨询
    • 3.1 区块链组成原理
      • 3.1.1 20220906 区块链2班手机录像
      • 3.1.2 20220906 区块链2班腾讯会议视频
    • 3.2 智能合约
      • 3.2.1 20220906 区块链2班腾讯会议视频
      • 3.2.2 20220906 区块链2班手机录像
    • 3.3 区块链电子发票
      • 3.3.1 20220907 区块链1班腾讯视频
      • 3.3.2 20220907 区块链2班腾讯会议视频
    • 3.4 区块链跨境支付
      • 3.4.1 20220907 区块链1班腾讯视频
      • 3.4.2 20220907 区块链2班腾讯会议视频
      • 3.4.3 20220912 区块链2班腾讯会议视频
    • 3.5 区块链供应链金融
      • 3.5.1 20220907 区块链1班腾讯视频
    • 3.6 区块链国际贸易
      • 3.6.1 20220907 区块链1班腾讯视频
  • 4 solidity基础
    • 4.1 第一个solidity程序
      • 4.1.1 20220912 21级2班腾讯会议视频
      • 4.1.2 20220912 21级2班手机视频
      • 4.1.3 20220914 21级1班手机录像
      • 4.1.4 20220914 21级1班腾讯会议视频
    • 4.2 数据类型
      • 4.2.1 20220912 21级2班腾讯会议视频
      • 4.2.2 20220912 21级2班手机视频
      • 4.2.3 20220914 21级1班腾讯会议视频
    • 4.3 变量和运算符
      • 4.3.1 20220920 21级2班腾讯会议视频
      • 4.3.2 20220920 21级2班腾讯会议视频
      • 4.3.3 20220920 21级1班腾讯会议视频
      • 4.3.4 20220920 21级1班手机录像
      • 4.3.5 20220920 21级1班手机录像
    • 4.4 循环语句
    • 4.5 条件语句
    • 4.6 数据存储类型
      • 4.6.1 20220920 21级2班腾讯会议视频
      • 4.6.2 20220920 21级1班腾讯会议
      • 4.6.3 20220920 21级1班手机录像
    • 4.7 结构体
      • 4.7.1 20220920 21级1班腾讯会视频
      • 4.7.2 20220920 21级1班手机录像
      • 4.7.3 20220921 21级2班手机录像
      • 4.7.4 20220921 21级2班腾讯会议视频
    • 4.8 数组
      • 4.8.1 20220921 21级1班手机录像
      • 4.8.2 20220921 21级1班腾讯会议视频
      • 4.8.3 20220927 21级2班腾讯会议视频
      • 4.8.4 20220927 21级2班手机录像
    • 4.9 枚举
    • 4.10 20220921 21级1班手机录像
    • 4.11 20220921 21级1班腾讯会议视频
    • 4.12 映射
    • 4.13 Solidity中的单位
    • 4.14 20220927 21级2班腾讯会议视频
    • 4.15 20220927 21级2班手机录像
    • 4.16 20220927 21级1班腾讯会议视频
    • 4.17 20220927 21级1班手机录像
    • 4.18 函数
      • 4.18.1 20220927 21级1班腾讯会议视频
      • 4.18.2 20220927 21级1班手机录像
    • 4.19 函数修饰符
    • 4.20 变量作用域和函数可见性
    • 4.21 状态可变性
  • 5 solidity进阶
    • 5.1 构造函数
    • 5.2 函数重载
    • 5.3 抽象合约
    • 5.4 库
    • 5.5 接口
    • 5.6 加密函数和数学函数
    • 5.7 合约继承
    • 5.8 错误处理
    • 5.9 事件
      • 5.9.1 2022.11.02 区块链1班腾讯会议视频
    • 5.10 类型转换
      • 5.10.1 2022.11.02 区块链1班腾讯会议视频
      • 5.10.2 2022.11.02 区块链2班腾讯会议视频
    • 5.11 回退函数
      • 5.11.1 2022.11.08 区块链2班腾讯会议视频
    • 5.12 转账方式
      • 5.12.1 2022.11.08 区块链2班腾讯会议视频
      • 5.12.2 2022.11.08 区块链1班 腾讯会议视频
    • 5.13 实践代码
  • 6 智能合约游戏案例初阶
    • 6.1 合约
    • 6.2 整形和状态变量
    • 6.3 算数运算符
    • 6.4 结构体和字符串
    • 6.5 数组
    • 6.6 函数1
    • 6.7 函数2
    • 6.8 函数3
    • 6.9 类型转换
    • 6.10 事件
    • 6.11 地址类型、映射
    • 6.12 全局变量
    • 6.13 异常处理
    • 6.14 引入与继承
    • 6.15 数据位置
    • 6.16 函数可见性1
    • 6.17 函数可见性2
    • 6.18 接口1
    • 6.19 接口2
    • 6.20 接口3
    • 6.21 条件语句
  • 7 智能合约游戏案例进阶
    • 7.1 智能合约的不可更改性
    • 7.2 合约的“所有权”和权限控制
    • 7.3 函数修饰符 onlyOwner
    • 7.4 时间单位
    • 7.5 区块宠物间隔周期
    • 7.6 函数修饰符-公有函数和安全性
    • 7.7 函数修饰符-带参数的函数修饰符
    • 7.8 函数修饰符-自定义函数修饰符
    • 7.9 燃料gas
    • 7.10 gas-使用view节约gas
    • 7.11 gas-存储非常昂贵
    • 7.12 gas-for循环减少写入
    • 7.13 可支付
    • 7.14 体现和转账
    • 7.15 宠物大乐斗
    • 7.16 生成随机数
    • 7.17 宠物大乐斗流程
    • 7.18 重构通用逻辑
    • 7.19 更多重构
    • 7.20 排行榜-斗舞逻辑
    • 7.21 宠物舞技排行榜
    • 7.22 宠物胜利判断
    • 7.23 宠物失败判断
  • 8 区块链企业项目
    • 8.1 项目背景
    • 8.2 企业智能合约应用
    • 8.3 功能实现上
    • 8.4 功能实现下
    • 8.5 功能实现下代码续
    • 8.6 毕业证系统的solidity代码
  • 9 solidity语法详解
    • 9.1 源文件映射
    • 9.2 特殊特性(Esoteric Features)
    • 9.3 新建目录
    • 9.4 内部机制
    • 9.5 调用数据的布局(Layout of CallData)
    • 9.6 内存变量的布局(Layout in Memory)
    • 9.7 状态变量的存储模型(Layout of State Variables in Storage)
    • 9.8 独立的汇编语言
    • 9.9 Solidity Assembly
    • 9.10 库(Libraries)
    • 9.11 接口
    • 9.12 抽象合约(Abstract Contracts)
    • 9.13 继承(Inheritance)
    • 9.14 事件(Events)
    • 9.15 回退函数(fallback function)
    • 9.16 常量(constant state variables)
    • 9.17 新建目录
    • 9.18 函数修改器(Function Modifiers)
    • 9.19 访问函数(Getter Functions)
    • 9.20 可见性或权限控制(Visibility And Accessors)
    • 9.21 合约
    • 9.22 内联汇编(Inline Assembly)
    • 9.23 异常(Excepions)
    • 9.24 作用范围和声明(Scoping And Decarations)
    • 9.25 赋值(Assignment)
    • 9.26 表达式的执行顺序(Order of Evaluation of Expressions)
    • 9.27 创建合约实例(Creating Contracts via `new`)
    • 9.28 函数调用(Function Calls)
    • 9.29 新建目录
    • 9.30 控制结构
    • 9.31 入参和出参(Input Parameters and Output Parameters)
    • 9.32 地址相关(Address Related)
    • 9.33 数学和加密函数(Mathematical and Cryptographic Functions)
    • 9.34 特殊变量及函数(Special Variables and Functions)
    • 9.35 时间单位(Time Units)
    • 9.36 货币单位(Ether Units)
    • 9.37 类型推断(Type Deduction)
    • 9.38 基本类型间的转换
    • 9.39 左值的相关运算符
    • 9.40 映射/字典(mappings)
    • 9.41 结构体(struct)
    • 9.42 数组
    • 9.43 数据位置(Data location)
    • 9.44 引用类型(Reference Types)
    • 9.45 函数(Function Types)
    • 9.46 枚举
    • 9.47 六进制字面量
    • 9.48 字符串(String literal)
    • 9.49 小数
    • 9.50 字节数组(byte arrays)
    • 9.51 地址(Address)
    • 9.52 整型(Integer)
    • 9.53 布尔(Booleans)
    • 9.54 值类型与引用类型
    • 9.55 智能合约源文件的基本要素概览(Structure of a Contract)
    • 9.56 Solidity智能合约文件结构
    • 9.57 solidity中的特殊函数
    • 9.58 新建目录
    • 9.59 新建目录
  • 10 springboot vue前端后端分离项目
    • 10.1 创建springboot 动态页面 和api
    • 10.2 创建vue项目
    • 10.3 编写vue前端页面访问api
深入浅出solidity

深入浅出Solidity

作者:石翔|FISCO BCOS 核心开发者

在只有比特币的年代,区块链能够实现简单的价值产生和转移,但却未出现更多的商业模式。以太坊给区块链带来了维度的提升,基于区块链的应用渐趋丰富,区块链的各种商业模式加速涌现。这其中很重要的原因,是以太坊给区块链带来了一套图灵完备的编程语言。

区块链的主要功能,是实现了多方的共识。在比特币中,需要共识的操作是固定的,是非图灵完备的。其共识的仅仅是价值所有者的改变。但以太坊上,开发者可以自己编写需要共识的逻辑,以太坊通过智能合约语言Solidity,实现了共识逻辑的自定义。

Solidity 介绍

Solidity语言和Java存在着些许相似之处。在众多编程语言中,Java是发展较为成熟的。Java代码在Java虚拟机(JVM)执行。JVM屏蔽掉了操作系统的差异,使得Java成为一个跨平台的语言。一套Java代码可在Windows、Linux、Mac上通用,而不需要关心操作系统的差异。

Solidity与Java类似。代码写好后,都需要通过编译器将代码转换成二进制,在Java中,编译器是Javac,而对于Solidity,是solc。生成后的二进制代码,会放到虚拟机里执行。Java代码在Java虚拟机(JVM)中执行,在Solidity中,是一个区块链上的虚拟机EVM。

../../../../_images/IMG_5440.PNG

Solidity与Java的不同之处在于,Solidity是服务于区块链的语言,代码在区块链上执行。EVM是区块链上的一个执行器。每个区块链节点都有一个EVM。Solidity在EVM中被执行后,EVM对区块链的数据进行了改变。这些数据的改变交由共识算法去共识。同时,Solidity的操作仅限于EVM内部,不能访问外部不确定系统或数据,如系统时钟,网络文件系统等。

Solidity的设计目的,是给区块链提供一套统一的逻辑,让相同的代码跑在区块链的每个节点上,借助共识算法,让区块链的数据以统一的方式进行改变,达到全局一致的结果。

Solidity 实现细节

以此处的Demo合约为例,合约中有一个全局变量m,并有一个函数add(),实现给全局变量m增加x数值的功能。

../../../../_images/IMG_5441.PNG

通过合约编译器solc,可将此合约编译成二进制。二进制的每个字(8 bit),表示一个EVM的操作码(OPCODE)。Demo合约编译出的二进制及其相应的OPCODE如下,实现了完整的Demo合约的功能,包括对合约的装载、合约接口的调用和异常处理的逻辑。其中,标红部分是add()方法的实现。

../../../../_images/IMG_5442.PNG

将add()函数的OPCODE的标红部分摘取出来,可看到其具体的实现思想与汇编代码相同,是一种基于堆栈式的操作。其中的SLOAD将区块链上指定位置的数据读入堆栈顶部,ADD实现将堆栈顶端的两个数据相加,SSTORE再将相加后放在堆栈顶部的结果写入区块链下一个区块的数据中,为下个区块的共识做准备。

../../../../_images/IMG_5443.PNG

在合约二进制被部署到区块链上后,通过发送交易调用合约里的方法。节点根据交易将合约代码装载入EVM中,并根据交易的传参执行合约上相应的函数add()。

EVM执行合约代码,从区块链上读入当前区块的数据,进行相加操作,并将结果写入下一个区块(等待共识的区块)对应的状态数据中。

此后,共识算法将待执行的区块共识落盘,区块高度增加,区块链上的数据完成更新。

../../../../_images/IMG_5444.PNG

上述步骤可见,Solidity的实现与当今已有的做法有着很多相似之处。编译,用的是传统的套路,将代码转换成虚拟机可执行的二进制;执行,也是与传统方式相同,借助堆栈作为缓冲区执行二进制代码。

Solidity 局限与改进

Solidity由于是第一个大规模应用的智能合约语言,存在着一些有待改进的地方。

**Solidity不够灵活。**Solidity语言受到自身堆栈深度的限制,函数传参和局部参数的个数总和不能超过16个。要实现一些比较复杂的函数难免有些鸡肋。Solidity是一种强类型的语言,但其类型转换较为麻烦。将整型转换成字符串时需要转换成二进制再拼接。在字符串的操作上,缺少一些方便的函数。

**Solidity的性能较差。**在执行上,OPCODE的执行是一种用程序模拟的汇编执行器,而不是直接使用CPU的资源。在存储上,Solidity的底层存储单位是32字节(256 bits),对硬盘的读写要求较高,浪费了大量的存储资源。

针对上述两点,FISCO BCOS提供了一种用C++写合约方式:预编译合约。开发者可以用C++编写智能合约逻辑,并将其内置在节点中。

预编译合约的调用方法与Solidity合约相同,通过合约地址即可直接调用。FISCO BCOS提供了参数解析,将调用的参数解析成C++可识别的格式。

预编译合约突破了Solidity语言的限制,借助强大的C++语言,可以灵活的实现各种逻辑,灵活性大大提高。同时,C++的性能优势也得到了很好的利用,通过预编译合约编写的逻辑,相比于Solidity语言来说,性能得到提升。