目录

  • 1 第一单元
    • 1.1 A note in advance
    • 1.2 Part 1 Game theory: course introduction
    • 1.3 Part 2 what is game theory
    • 1.4 Part 3 Prisoners Dilemma and Nash
    • 1.5 part 4 Several examples of dominant strategy
    • 1.6 part 5 Introdution of  chapter structure
  • 2 Nash Equilibrium: Theory
    • 2.1 Part1 Defining games
    • 2.2 Part2 Examples of Games from Game Theory
    • 2.3 Part3 Nash Equilibrium Introduction and the Keynes Beauty Contest
      • 2.3.1 What is Nash Equilibrium
    • 2.4 Part4 Strategic Reasoning and the Keynes Beauty Contest Game
    • 2.5 Part5 Response and Nash Equilibrium
    • 2.6 part6  Symmetric Zero Sum Games
    • 2.7 Part7 Examples
      • 2.7.1 Battle of the Sexes
      • 2.7.2 Stag Hunt and Pure Strategy Nash Equilibrium
      • 2.7.3 Matching Pennies and Mixed Strategy Nash Equilibrium
    • 2.8 part 8 Dominant Strategies
    • 2.9 Part9 Pareto Optimality
  • 3 Games with perfect information
    • 3.1 一个小回顾
    • 3.2 A review of chaper 1 in Chinese
    • 3.3 Static Games of Complete Information
    • 3.4 A review and examples in Chinese
    • 3.5 Typical examples in Chinese
    • 3.6 Game structure and classification (Chinese)
    • 3.7 Game process and information structure(Ch)
    • 3.8 Rationality and ability
    • 3.9 Game with complete information: analyzing mehtod
    • 3.10 Historical events analysis using game theory
    • 3.11 Basic analying mehtods of game theory
    • 3.12 Nash equilibrium:def.,merits and significance
    • 3.13 Nash equilibrium ​illustration:Cournot Model
  • 4 Ilustrations of Chapter2-3
    • 4.1 English PPT of  last week of letcures
    • 4.2 Ilustration: Cournot’s and Bertrand's models of oligopoly
    • 4.3 Ilustration:Electoral competition
    • 4.4 Ilustration:The War of Attrition
    • 4.5 Ilustration: Auctions
  • 5 Mixed Strategy Equilibrium
    • 5.1 He Yongda's intros and illustrations
    • 5.2 texts for chapter4 in Chinese and English versions
    • 5.3 mixed strategies in game theory101
    • 5.4 mixed strategies in game theory GTO
    • 5.5 mixed strategies -a new taste
    • 5.6 严格竞争博弈与混合策略(in Chinese)
    • 5.7 多重均衡博弈与混合策略(in Chinese)
    • 5.8 混合策略与严格下策反复消去法
    • 5.9 混合策略反应函数
    • 5.10 纳什均衡存在性:纳什定理
    • 5.11 多重纳什均衡:帕累托上策均衡
    • 5.12 多重纳什均衡:风险上策均衡
    • 5.13 多重纳什均衡:聚点和相关均衡
    • 5.14 多重纳什均衡:共谋与防共谋均衡
  • 6 Extensive Games with Perfect Information
    • 6.1 Contents of this section
    • 6.2 Game Theory 101 -Perfect Information Extensive Form
    • 6.3 GTO Perfect Information Extensive Form
    • 6.4 Brief PPT of Dynamic game with complete information
    • 6.5 Brief review of static and dynamic games
    • 6.6 动态博弈的表示和特点
    • 6.7 动态博弈的分析方法
    • 6.8 几个经典动态分析例子
      • 6.8.1 劳资博弈+讨价还价+委托代理人
    • 6.9 Reviewing dynamic games in English video-1
    • 6.10 Reviewing seuqential games in English video-2
    • 6.11 Reviewing dynamic games in English video-3
    • 6.12 My summary
  • 7 Coalitional Games
    • 7.1 Coalitional Game Theory Taste
    • 7.2 Coalitional Game Theory Definitions
    • 7.3 The Shapley Value
    • 7.4 The Core
    • 7.5 Comparing the Core and the Shapley Value in an Example
  • 8 Games with Imperfect Information
    • 8.1 corresponding courses of Stanford
    • 8.2 Game theory 101
  • 9 Bayesian Games
    • 9.1 Bayesian games 101
    • 9.2 Bayesian Games: Definitions, analysis,examples
Reviewing dynamic games in English video-1


In my last video I looked at the concept of a Nash equilibrium. A Nash equilibrium is a set of strategies such that no player has an incentive to change his strategy given every other player's strategy. Now we're going to look at a game where Nash equilibrium doesn't tell the whole story.

Let's say that you are walking home and you meet a robber. The robber tells you that you should give him your money or he'll kill you. Your choices are to hand over your money or not, and his choices are to carry out his threat or not. If you hand over the money you get a payoff of minus ten, and he gets a payoff often, since he gets your money.  If you don't hand over your money, and he makes good on his threat, you die, and your payoff is minus one million, and he gets a life sentence, so his payoff is minus ten thousand. If you don't hand over your money and he doesn't kill you, both payoffs are zero.

 

We can find the Nash equilibria in this game the same way we did before. If he won't kill you, you don't give him the money. If he will kill you, you do give him the money. If you give him the money, he is indifferent between carrying out his threat and not carrying it out, since either way he doesn't have to actually kill you. If you don't give him the money, he would rather not kill you and avoid that life sentence.

 

There are two Nash equilibria in this game, but one of them doesn't make all that much sense.  In order to decide which one makes sense and which one don't, we need another solution concept: the subgame perfect Nash equilibrium. I'll get to defining that later, first let's look at our robber game using a game tree.

 

This game tree is a different way of writing a game. It carries more information than the simple table since it tells us in what order the events take place. Each decision is made at a node, like this one and this one, and the game proceeds along a branch for each decision. The payoffs are written at the end of the tree's branches.

 

First, you decide to give the robber your money or not. If you give him the money, the game ends with you losing your money and him gaining your money. If you decide not to give him your money, then the robber decides whether to kill you or not. After he chooses, the game ends.

 

This game contains two subgames. The first is the entire game, and the second is the robber's choice of whether or not to kill you. A subgame is a set of choices within a game that is also a self-contained game themselves. A subgame always starts from a single node, in this case the robber's choice node.

 

A subgame perfect Nash equilibrium is an equilibrium in which every subgame is also a nash equilibrium.  We already solved for the Nash equilibria in the entire game, now we need to look for a Nash equilibrium in the other subgame. In this subgame, you have already refused to hand over your money, so the robber has a choice between killing you and going to jail, or not killing you. He's not going to kill you, because a payoff of zero is still better than a life sentence.

 

So there are two Nash equilibria in this game, but only one is a subgame perfect Nash equilibrium, the one where you don't hand over your money and you don't get killed. So, next time you get mugged by a game theorist, you know what to do.