目录

  • 1 第一单元
    • 1.1 版权声明
    • 1.2 晶体衍射实验实践指导
    • 1.3 晶体学介绍
    • 1.4 衍射实验室培训方案
    • 1.5 晶体衍射实验的总体步骤
    • 1.6 晶体图片
  • 2 晶体上样操作
    • 2.1 仪器开关机步骤
    • 2.2 液氮cryo开关操作
    • 2.3 晶体样品装样过程
    • 2.4 显微镜下的晶体挑选
    • 2.5 衍射实验-晶体上样及对心介绍
    • 2.6 晶体对心过程
    • 2.7 Synergy仪器的开关门及上样
    • 2.8 FRX仪器的开关门及上样
    • 2.9 大分子晶体预先冷冻上样方法
    • 2.10 测角头事故案例
    • 2.11 封管测试方法
  • 3 数据收集软件操作
    • 3.1 晶体衍射实验软件操作
    • 3.2 CrysAlispro-小分子数据采集
      • 3.2.1 测试时长
    • 3.3 CrysAlispro-大分子晶体粗筛设置
    • 3.4 高温实验操作步骤
    • 3.5 晶体衍射数据质量判定
    • 3.6 twin indexing
    • 3.7 append data collection
  • 4 结构解析和精修
    • 4.1 结构解析介绍
    • 4.2 分析软件安装
      • 4.2.1 software updates - platon
      • 4.2.2 software updates - shelx
    • 4.3 结构解析操作
    • 4.4 checkcif report -olex2
    • 4.5 checkcif report - server
    • 4.6 CIF文件生成晶体学数据表
    • 4.7 晶体数据处理并生成MTZ
    • 4.8 晶面指标化-drag mode
    • 4.9 晶面指标化-snap mode
    • 4.10 去除精修的限制命令
    • 4.11 如何查看分析结果-cif文档?
    • 4.12 对称轴上的无序精修-part -1
    • 4.13 EXYZ和EADP-OLEX2
    • 4.14 phasing simulated annealing and refinement
    • 4.15 position disorder modeling - two methods
    • 4.16 phasing - shelxD
    • 4.17 EXYZ-disorder modeling
    • 4.18 Fragment DB application case
    • 4.19 import model using OLEX2
    • 4.20 add symmetry via Platon
    • 4.21 part-1 Na3HCO3CO3
    • 4.22 phasing by MR(分子置换)with PHENIX
    • 4.23 checkcif using platon
  • 5 粉末衍射技术
    • 5.1 粉末衍射样品制备
    • 5.2 简易的粉末衍射零点校正方法
    • 5.3 粉末衍射实验 - 步长0.02?
    • 5.4 结晶度
    • 5.5 实操-寻峰与报告
    • 5.6 溶剂体积计算软件
    • 5.7 择优取向对峰强和峰位置的影响
    • 5.8 样品研磨过筛与不研磨样品测试差异
  • 6 蛋白结构精修
    • 6.1 tutorial结构精修
  • 7 晶体结构缺陷分析技术
    • 7.1 案例1-弥散散射-对分布函数
    • 7.2 案例2-diffuse scattering
    • 7.3 run discus
    • 7.4 read and plot
      • 7.4.1 build a crystal
      • 7.4.2 build a disordered crystal
      • 7.4.3 disorder and vacancy
    • 7.5 RMC fitting to pdf date
  • 8 checkcif回复及其修正
    • 8.1 VRF回复方法
    • 8.2 412_ALERT_2_B and 417_Alert_2_A and 416
    • 8.3 PLAT342_ALERT_3_B回复
    • 8.4 THETM01_ALERT_3_A
    • 8.5 PLAT029_ALERT_3_A
    • 8.6 PLAT910_ALERT_3_B
    • 8.7 PLAT035_ALERT_1_B
    • 8.8 Short H--H contacts
    • 8.9 196_alert_1_B no temp
    • 8.10 312_alert_2_A
    • 8.11 415_alert_2_A
    • 8.12 430_alert_2_A
    • 8.13 O70_Alert_1_A
    • 8.14 934_ALERT_3_A
    • 8.15 316_ALERT_2_A
    • 8.16 413_414_ALERT_2_A
    • 8.17 O35_ALERT_1_B
    • 8.18 196_ALERT_1_B
    • 8.19 112_ALERT_2_B
    • 8.20 417/410_short d-h and h-h
  • 9 审稿人意见回复案例
    • 9.1 实际案例1-限制与对称
    • 9.2 实际案例2- atom list out of sequence
  • 10 虚拟仿真实验
    • 10.1 虚拟仿真实验体验介绍
    • 10.2 虚拟仿真实验体验项目
  • 11 FAQ常见问题
    • 11.1 如何查看晶体结构?
    • 11.2 TwinRot不正常工作
    • 11.3 twin检测
    • 11.4 OLEX多个溶剂分子的输入格式
    • 11.5 如何生成二维衍射图片
    • 11.6 如何判断预实验结果的好坏?
    • 11.7 什么样的数据才能用于结构解析?
    • 11.8 如何查看晶体在测试过程中是否移动?
    • 11.9 衍射点拖尾能用来解析结构吗?
    • 11.10 label atom and bond
    • 11.11 Z and Z'
    • 11.12 Laue group 和 点群
    • 11.13 flack参数的意义
    • 11.14 0.63的占位可以限制在0.5吗?
    • 11.15 P21 或者 P21C
    • 11.16 rms sigma / rms deviation
    • 11.17 how to use CCDC
    • 11.18 change asymmetric unit
    • 11.19 change asymmetric unit - H2O
    • 11.20 data collection and refinement for paper writing
    • 11.21 变换晶胞参数取向和空间群
    • 11.22 查看无序分子占位信息
    • 11.23 crystalline boundary 晶界
    • 11.24 移除无序部分,保存为有序结构-1
    • 11.25 移除无序部分,保存为有序结构-2
    • 11.26 C2/c or I2/a? which one should be choosed?
    • 11.27 Conventional and reduced cell
    • 11.28 twinning introduction
    • 11.29 same.sadi mismatch
    • 11.30 TITL error
    • 11.31 COD结构数据库应用-查找AlF3
    • 11.32 Rint for HKLF4 and HKLF5
    • 11.33 optimal crystal size and shape
    • 11.34 修改datablock的名称
    • 11.35 cif生成粉末衍射图和比对
  • 12 结晶实验操作
    • 12.1 结晶实验-结晶机器人操作
      • 12.1.1 结晶机器人操作
      • 12.1.2 结晶机器人关机步骤
      • 12.1.3 LCP设置不当与96板运行
      • 12.1.4 仪器未按照流程关机事故
      • 12.1.5 毛刷清洗
      • 12.1.6 非正常暂停后重启仪器步骤
      • 12.1.7 泵的开关on 还是off
    • 12.2 使用常见误操作
      • 12.2.1 96针清洗没有清洗
      • 12.2.2 水槽没有归位
      • 12.2.3 导向板未归位
    • 12.3 维护
      • 12.3.1 查看96针状态
      • 12.3.2 导板不能下滑
    • 12.4 考核方法
  • 13 JAN UVEX-P 操作
    • 13.1 UVEX - P 操作步骤
    • 13.2 问题1 - 紫外过曝使用
  • 14 液体配比仪操作
如何查看分析结果-cif文档?

下载OLEX2或者Mercury等软件,打开*.cif文档,可以看到三维的分子结构。


Now, you will want to manipulate your structure modelto display a packing diagram, a fully-grown structure, or perhaps a few nearbymolecules to show close contacts. To do this, you will be working mostly withthe Symmetry Generation tab under the View menu. To follow along withthe commands below,start by clicking on the View button and then expand the “SymmetryGeneration” tab by clicking on it. You will see three sub-menus.

 

Symmetry Tools

This tool tab features a set of buttons for changingthe appearance/location of the asymmetric unit; expanding ("growing")a structure on the screen; viewing the basis vectors and unit cell; and othersimilar tasks.

 

Move Near

This is useful for moving moieties of a structureclose to a particular atom of interest.

1. Click on an atom near which another moiety is to bemoved.

2. Activate the mode by clicking on the Move Nearbutton (or typing 'mode move').

3. Click on an atom of each moiety that is to be movedclose to the initially selected atom.

 

Copy Near

This is a slightly different method for collectingmoieties of a structure close to a particular atom of interest.

1. Click on an atom near which another moiety is to becopied.

2. Activate the mode by clicking on the Copy Nearbutton (or typing 'mode move -c').

3. Click on an atom of each moiety that is to becopied close to the initially selected atom.

 

Assemble

Compaq: This command brings the various fragments of astructure as close together as possible on the screen.

Compaq –a: Brings fragments of a structure together asabove, but also assembles any "broken" fragments.

 

Growing

Olex2 shows the asymmetric unit by default. This tooltab contains very powerful techniques for "assembling" a structuremodel on the screen exactly as desired. It is then possible to refine the modelrepeatedly in Olex2 without dismantling this assembly.

 

Centre on Cell

All moieties outside the cell in the structure will becentred within the cell.

 

Centre on Largest Part

All moieties in the structure will be centred on thelargest moiety.

 

Show Basis

Displays/Hides thebasis vectors of this structure.

 

Show Cell

Displays/Hides theedges of the unit cell.

 

Quality

Use the slider tochange the quality of the display graphics from low (far left) to medium(middle) to high (far right). A lower quality setting may be useful if thecomputer struggles to display large structures.

Fuse

Display the asymmetric unit of the structure only. Allsymmetry-generated atoms will be removed. This is a command of fundamentalimportance.

 

Grow all

All symmetry-equivalent atoms required to show the"complete" structure will be displayed. In the case of polymericstructures, this is somewhat arbitrary, and more clearly defined 'grow'commands may need to be issued to display the structure as desired.

 

Packing

This tool tab provides methods of visualizing the 3Dpacking of a structure.

 

Growing

Growing here is used as a general term for addingatoms to the existing model on the screen in some systematic way, e.g., byadding symmetry-equivalent atoms to visualize an entire molecule when theasymmetric unit shows only part of the molecule because Z' < 1 for the structure.

 

Grow All

Generates all "missing" connectedsymmetry-equivalent atoms. This will usually suffice to expand an asymmetricunit to show a complete molecule.

 

Shells

This adds atoms in concentric shells outward from thestructure currently displayed on the screen.

 

Complete

Generates all missing symmetry-equivalent atoms of analready grown structure, whether bound to the main fragment or not. Thus, thiscommand will display symmetry-equivalent solvent molecules and counter-ions notgenerated by a plain 'grow' command.

 

Mode Growcommand

Similar to 'grow', but now the 'grow' command will beexecuted only when an object is clicked. Upon entering a growing mode, growable"bonds" will sprout from atoms satisfying the chosen growingconditions.

 

ShortContacts

Shows growable "bonds" to atoms involved in"short interactions" (e.g., hydrogen bonds) with the currentlydisplayed structure.

 

Van derWaals Radii

Shows growable "bonds" to other occurrencesof the currently selected atoms that are at most 2.0 Å away from the selectedatom.

 

Move

When a growable "bond" is clicked, thesymmetry-equivalent atom is moved to the new position. This is very useful whentrying to assemble a meaningful asymmetric unit for extended structures(polymers).

 

Shells

Shows growable "bonds" that can be clickedto grow the structure outward in concentric shells.

Assemble

Strictly speaking, this tool does not belong to theGrow family of tools, but it is frequently used together with the growingtools. It is used to rearrange components of the asymmetric unit for a morecompact or chemically sensible display of the model, often after a 'grow'operation.

 

Broken Fragments: 

Sometimes, parts of a model may become"broken" - parts that should be bonded are shown as separatefragments. This tool will bring them back together.

 

Atom-to-Atom: 

Similar to the Broken Fragments tool, but using adifferent reassembly algorithm.

 

Metal Last: 

In this tool, metal ions are first taken out of thereassembly process (which is very useful when trying to assemble a ligand!),after which they are placed at the shortest possible distance to the otheratoms in the structure.

 

Peaks: 

This moves all electron density peaks as close toexisting atoms as possible.

 

 

Packing

This tool tab provides methods of visualizing the 3Dpacking of a structure.

 

Expand Short Contacts

Use this slider bar to define the minimum distance forinteratomic "short contacts" such as hydrogen bonds or halogen bonds.As the slider moves to the right, more clickable "bonds" will beshown from atoms meeting the contact criterion. Alternatively, a number can beentered in the box next to the slider. Clicking on one of these"bonds" expands the display of the structure in the direction of thebond.

 

Pack Radius

Move the slider to the right to show allsymmetry-equivalent fragments around the current structure within the specifiedradius. It is also possible to type a number into the box adjacent to theslider.

 

Pack to limits

Displays all fragments of the structure within thelimits defined for unit cell edges a, b and c. The numbers in the box aremultiples of the edge lengths.

 

Fill Unit Cell

Displays only those atoms lying within the unit cell.

 

Complete Fragments

Completes any fragments that are only partiallydisplayed as a result of the various packing options. This is often usefulafter the Fill Unit Cell command.