目录

  • 1 绪论
    • 1.1 我们需要化学
    • 1.2 谭天伟院士:如何让化工更“美丽”?
    • 1.3 美丽化学
    • 1.4 化学的简历
  • 2 化学基础知识
    • 2.1 气体
      • 2.1.1 理想气体方程
      • 2.1.2 实际气体的状态方程
      • 2.1.3 混合气体的分压定律
    • 2.2 液体和溶液
      • 2.2.1 溶液浓度的表示方法
      • 2.2.2 溶液的饱和蒸汽压
      • 2.2.3 稀溶液的依数性
        • 2.2.3.1 溶液沸点的升高
        • 2.2.3.2 溶液的凝固点降低
        • 2.2.3.3 渗透压
  • 3 化学热力学基础
    • 3.1 化学热力学的研究对象
    • 3.2 新建课程目录
    • 3.3 基本概念
      • 3.3.1 热与功
      • 3.3.2 反应进度
      • 3.3.3 热力学标准态
    • 3.4 化学热力学的四个重要状态函数
      • 3.4.1 热力学能(内能)和焓
      • 3.4.2 盖斯定律及其应用
      • 3.4.3 熵
      • 3.4.4 自由能
  • 4 化学平衡
    • 4.1 化学平衡态
    • 4.2 平衡常数
    • 4.3 浓度对化学平衡的影响
    • 4.4 压力对化学平衡的影响
    • 4.5 温度对化学平衡的影响
  • 5 化学反应速率
    • 5.1 化学反应速率的定义
    • 5.2 浓度对化学反应速率的影响
    • 5.3 温度对反应速度的影响及阿伦尼乌斯方程
    • 5.4 反应机理
    • 5.5 反应速率理论简介
    • 5.6 催化剂对反应速率的影响
  • 6 酸碱解离平衡
    • 6.1 弱酸和弱碱的解离平衡
      • 6.1.1 一元弱酸、弱碱的解离平衡
      • 6.1.2 水的解离平衡和溶液的PH
      • 6.1.3 多元弱酸的解离平衡
      • 6.1.4 缓冲溶液
    • 6.2 盐的水解
      • 6.2.1 水解平衡常数
      • 6.2.2 水解度和水解平衡的计算
    • 6.3 电解质溶液理论和酸碱理论的发展
      • 6.3.1 强电解质溶液理论
      • 6.3.2 酸碱质子理论
      • 6.3.3 酸碱溶剂体系理论
      • 6.3.4 酸碱电子理论
  • 7 沉淀溶解平衡
    • 7.1 溶度积常数
    • 7.2 沉淀生成的计算与应用
      • 7.2.1 难溶硫化物沉淀与溶解
      • 7.2.2 金属氢氧化物沉淀的生成-溶解与分离
    • 7.3 沉淀的溶解和转化
    • 7.4 典型例题
  • 8 原子结构和元素周期律
    • 8.1 近代原子结构理论的确立
    • 8.2 相对原子质量
    • 8.3 原子结构的波尔行星模型
      • 8.3.1 氢原子光谱
      • 8.3.2 波尔理论
    • 8.4 氢原子结构(核外电子运动)的量子力学模型
      • 8.4.1 微观粒子运动的基本特征(波粒二象性、德布罗意关系式、海森堡不确定原理)
      • 8.4.2 薛定谔方程
      • 8.4.3 氢原子的量子力学模型
        • 8.4.3.1 主量子数
        • 8.4.3.2 角量子数
        • 8.4.3.3 磁量子数
        • 8.4.3.4 量子故事会
        • 8.4.3.5 量子骗局
        • 8.4.3.6 粒子世界
      • 8.4.4 核外电子运动的图形描述
        • 8.4.4.1 电子云图
        • 8.4.4.2 径向分布图
        • 8.4.4.3 角度分布图
    • 8.5 基态原子电子组态(电子排布)
      • 8.5.1 多电子体系中的能量
      • 8.5.2 屏蔽效应
      • 8.5.3 钻穿效应
      • 8.5.4 多电子原子的能级
      • 8.5.5 核外电子的排布三原则
    • 8.6 元素周期表
      • 8.6.1 元素的周期表
      • 8.6.2 元素的族和分区
      • 8.6.3 知识拓展
    • 8.7 元素基本性质的周期性
      • 8.7.1 原子半径
      • 8.7.2 电离能
      • 8.7.3 电子亲和能
      • 8.7.4 电负性
    • 8.8 拓展阅读
      • 8.8.1 元素周期表150周年了,你了解元素的宇宙起源吗?
      • 8.8.2 一幅图读懂量子力学(数学的判决)
  • 9 分子结构和共价键理论
    • 9.1 路易斯理论
    • 9.2 价键理论
      • 9.2.1 共价键的本质
      • 9.2.2 价键理论要点
      • 9.2.3 共价键的饱和性和方向性
      • 9.2.4 共价键的类型
    • 9.3 杂化轨道理论
      • 9.3.1 杂化轨道的概念
      • 9.3.2 杂化轨道的类型
      • 9.3.3 等性和不等性杂化
      • 9.3.4 离域键
    • 9.4 价层电子互斥模型
    • 9.5 共轭大π键
    • 9.6 分子轨道理论
      • 9.6.1 分子轨道理论的要点
      • 9.6.2 分子轨道线性组合的三原则
      • 9.6.3 分子轨道的能级图
    • 9.7 共价分子的性质
    • 9.8 分子间作用力
      • 9.8.1 范德华力
      • 9.8.2 氢键
    • 9.9 习题
  • 10 晶体结构
    • 10.1 晶体的特征
    • 10.2 晶体的基本类型及其结构
    • 10.3 离子的极化
  • 11 氧化还原反应
    • 11.1 氧化还原反应
    • 11.2 原电池
      • 11.2.1 原电池
      • 11.2.2 电极电势和电动势
      • 11.2.3 能斯特方程
      • 11.2.4 能斯特方程的应用
        • 11.2.4.1 酸度对电极电势的影响
        • 11.2.4.2 沉淀生成对电极电势的影响
    • 11.3 图解法讨论电极电势
      • 11.3.1 元素电势图
      • 11.3.2 自由能 — 氧化数图
    • 11.4 化学电源与电解
      • 11.4.1 化学电源简介
      • 11.4.2 分解电压与超电势
    • 11.5 习题
    • 11.6 拓展阅读
      • 11.6.1 一口气搞懂锂电池
  • 12 配合物
    • 12.1 配合物的基本概念
    • 12.2 配位化合物的立体异构
    • 12.3 配合物的价键理论
    • 12.4 配合物的晶体场理论
  • 13 配位平衡
    • 13.1 配合物的稳定常数
    • 13.2 影响配合物在溶液中的稳定性因素
    • 13.3 配合物的性质
路易斯理论

理论 ( Lewis theory )


离子键理论能够很好地解释许多离子化合物的形成和性质,但它不能说明由同种元素的原子组成的单质分子的形成,也不能说明由电负性相近元素的原子也能形成稳定的分子。1916 年美国化学家 G. N. Lewis 为了说明上述分子的形成,提出了共价键理论。Lewis 认为,同种原子之间以及电负性相近的原子之间可以通过共用电子对形成分子,通过共用电子对形成的 化学键称为共价键 (covalent  bond),形成的分子称为共价分子

  在分子中,每个原子均应具有稳定的稀有气体原子的 8 电子外层电子构型 (He 为 2 电子),习惯上称为“八隅 体规则”。分子中原子间不是通过电子的转移,而是通过 共用一对或几对电子来实现 8 电子稳定构型的。每一个共 价分子都有一种稳定的结构形式,称为Lewis 结构式

Lewis结构式中,用小黑点表示电子,如:

 

 

  为了表示方便,共用一对电子通常用一短线代表,即表示形成一个单键,共用两对电子,则用两道短线表示,形成一个双键,共用三对电子,则用三道短线表示,形成一个叁键,如 

 

 

 对于复杂分子,先根据分子中各原子的价电子数计算出分子的总价电子数,写出骨架结构式,根据“八隅体规则” 判断该分子的 Lewis 结构式。

  甲醛 (CH2O),总的电子数为4 + ( 1 ´ 2 ) + 6 = 12,其骨架结构式为 HHCO,用去了三对电子,即6 个电子,还剩下的6 个电子有如下三种排布方式

 

 

 

  根据“八隅体规则” 很容易判断出 (c) 为甲醛的 Lewis 结构式。

  又如NO +离子,其价电子总数等于10,即氮原子和氧原子的价电子数相加再减去一个电子。

  它的骨架结构只能是 N-O,用去 2 个电子,剩下 8 个电子无论是按图(a)中以孤对方式分配给两个原子, 还是按(b)和(c)那样将 N-O 单键改成双键,都不能满足“八隅体规则”,只有将单键改成叁键,才能满足要 求。

  因此,(d)才是 NO + 离子的 Lewis 结构式。应该注意的是,电荷标在了物种的右上角,表示该电荷为整个物种所有而不属于该物种的某个原子。

   Lewis 的共价键概念初步解释了一些简单非金属原子间形成共价分子(或离子)的过程以及与离子键的区别,但没有揭示共价键的本质和特征。另外,“八隅体规则”例外的情况很多,如在 BeF 2 ,BF 3 , PCl 5 和 SF 6 分子中。某些分子即使可以表示出 8 电子结构,但分子表现出来的性质也与该种路易斯电子结构式不符,如 O 2 分子的磁性等。

  Lewis 的电子对成键概念为现代共价键理论奠定了基础。