生物化学

武林芝

目录

  • 1 蛋白质
    • 1.1 学习目标
    • 1.2 氨基酸
      • 1.2.1 氨基酸的结构通式
      • 1.2.2 氨基酸的分类
      • 1.2.3 氨基酸的理化性质
    • 1.3 肽
      • 1.3.1 肽的结构
      • 1.3.2 生物活性肽的功能
      • 1.3.3 生物活性肽的来源
      • 1.3.4 生物活性肽的应用
    • 1.4 蛋白质的结构
      • 1.4.1 蛋白质的一级结构
      • 1.4.2 蛋白质的空间结构
    • 1.5 蛋白质结构与功能的关系
    • 1.6 蛋白质的性质
    • 1.7 蛋白质的分离
    • 1.8 蛋白质测序
    • 1.9 知识清单
  • 2 核酸
    • 2.1 知识目标
    • 2.2 核酸的组成
    • 2.3 核酸的一级结构
    • 2.4 DNA的二级结构
    • 2.5 DNA的高级结构
    • 2.6 DNA和基因组
    • 2.7 RNA的结构和功能
    • 2.8 核酸的性质
    • 2.9 核酸的序列测定
    • 2.10 知识清单
  • 3 糖类
    • 3.1 学习目标
    • 3.2 糖概述
    • 3.3 ​单糖
    • 3.4 寡糖
    • 3.5 多糖
    • 3.6 糖复合物
    • 3.7 知识清单
  • 4 脂质
    • 4.1 知识目标
    • 4.2 脂类概述
    • 4.3 三酰甘油
    • 4.4 脂肪酸
    • 4.5 甘油磷脂
    • 4.6 鞘脂
    • 4.7 类固醇
    • 4.8 生物膜
    • 4.9 知识清单
  • 5 酶
    • 5.1 学习目标
    • 5.2 酶的概念和特点
    • 5.3 酶的化学本质
    • 5.4 酶的组成
    • 5.5 酶的命名与分类
    • 5.6 酶的专一性
    • 5.7 酶的作用机制
    • 5.8 酶促反应动力学
    • 5.9 影响酶促反应的因素
    • 5.10 酶活性的调节
    • 5.11 酶的研究方法
    • 5.12 知识清单
  • 6 新陈代谢总论与生物氧化
    • 6.1 知识目标
    • 6.2 新陈代谢总论
    • 6.3 生物氧化
    • 6.4 知识清单
  • 7 糖代谢
    • 7.1 酶促降解
    • 7.2 糖的分解代谢
    • 7.3 糖的合成代谢
  • 8 脂质代谢
    • 8.1 酶促水解
    • 8.2 分解代谢
    • 8.3 合成代谢
    • 8.4 其他物质代谢
  • 9 蛋白质的降解与氨基酸代谢
    • 9.1 酶促水解
    • 9.2 氨基酸的分解代谢
    • 9.3 氨基酸的合成代谢
  • 10 核苷酸代谢
    • 10.1 核苷酸分解代谢
    • 10.2 核苷酸合成代谢
    • 10.3 核苷酸生物合成的调节
    • 10.4 核苷酸合成的抗代谢物
  • 11 物质代谢的调节控制
    • 11.1 物质代谢的相互联系
    • 11.2 分子水平的调节
    • 11.3 细胞水平的调节
    • 11.4 多细胞整体水平的调节
  • 12 DNA的生物合成
  • 13 RNA的生物合成
  • 14 蛋白质的生物合成
  • 15 每行填写一个目录,目录的层级用两个空格区分,只支持三级目录
  • 16 比如:
  • 17 蛋白质的结构和功能
    • 17.1 前置问题及学习目标
    • 17.2 蛋白质的分子组成
      • 17.2.1 氨基酸是蛋白质的基本组成单位
        • 17.2.1.1 氨基酸的基本结构
        • 17.2.1.2 氨基酸的分类
        • 17.2.1.3 氨基酸的理化性质
      • 17.2.2 蛋白质是氨基酸通过肽键相连而成的生物大分子
    • 17.3 蛋白质的分子结构
      • 17.3.1 氨基酸的排列顺序是蛋白质的一级结构
      • 17.3.2 多肽链主链的局部空间构象是蛋白质的二级结构
        • 17.3.2.1 肽单元
        • 17.3.2.2 主要二级结构形式
        • 17.3.2.3 超二级结构-模体
      • 17.3.3 侧链R基团的相互作用形成蛋白质的三级结构
      • 17.3.4 亚基缔合成分子—蛋白质的四级结构
    • 17.4 蛋白质结构与功能的关系
      • 17.4.1 蛋白质一级结构是空间构象和功能的基础
      • 17.4.2 蛋白质的功能依赖其特定的空间构象
    • 17.5 蛋白质的理化性质及应用
      • 17.5.1 蛋白质具有和氨基酸相同的和自身特殊的理化性质
      • 17.5.2 利用蛋白质的性质分离纯化蛋白质
    • 17.6 必交作业
  • 18 核酸的结构与功能
    • 18.1 前置问题及学习目标
    • 18.2 核酸的化学组成和一级结构
      • 18.2.1 核酸分类及基本组成单位—核苷酸
      • 18.2.2 核酸的一级结构是核苷酸的排列顺序
    • 18.3 DNA的结构和功能
      • 18.3.1 DNA的二级结构是双螺旋结构
      • 18.3.2 DNA的三级结构是超螺旋结构
    • 18.4 RNA的结构与功能
      • 18.4.1 mRNA从DNA转录遗传信息指导蛋白质合成
      • 18.4.2 tRNA是蛋白质合成的接合器分子
      • 18.4.3 rRNA参与蛋白质的合成场所-核糖体的组成
      • 18.4.4 细胞内其它小分子RNA参与体内重要过程
    • 18.5 核酸的理化性质
      • 18.5.1 核酸的酸性和紫外吸收特性
      • 18.5.2 核酸的变性和分子杂交技术
    • 18.6 必交作业
  • 19 酶与辅酶
    • 19.1 前置问题及学习目标
    • 19.2 酶的分子结构
      • 19.2.1 酶的分子组成
      • 19.2.2 酶的空间结构
    • 19.3 酶的分类与命名
    • 19.4 酶的反应特点与机制
      • 19.4.1 酶促反应的特点
      • 19.4.2 酶促反应的机制
    • 19.5 酶促反应的动力学
      • 19.5.1 底物浓度对反应速度的影响
      • 19.5.2 酶浓度对反应速度的影响
      • 19.5.3 温度对反应速度的影响
      • 19.5.4 pH对反应速度的影响
      • 19.5.5 抑制剂对反应速度的影响
      • 19.5.6 激活剂对酶促反应速度的影响
    • 19.6 酶活性的调节
      • 19.6.1 酶原与酶原激活
      • 19.6.2 酶的变构调节
      • 19.6.3 酶的共价修饰调节
      • 19.6.4 细胞外基质
      • 19.6.5 酶含量的调节
      • 19.6.6 同工酶
    • 19.7 必交作业
  • 20 糖复合物
    • 20.1 前置问题及学习目标
    • 20.2 糖蛋白
      • 20.2.1 糖蛋白的结构
      • 20.2.2 糖蛋白的功能
    • 20.3 蛋白聚糖
      • 20.3.1 蛋白聚糖的结构
      • 20.3.2 蛋白聚糖的功能
    • 20.4 糖脂
  • 21 糖代谢
    • 21.1 前置问题及学习目标
    • 21.2 代谢概述
    • 21.3 糖代谢
      • 21.3.1 糖代谢概述
        • 21.3.1.1 糖的生理功能
        • 21.3.1.2 糖的消化
        • 21.3.1.3 糖的吸收
        • 21.3.1.4 糖的转运
      • 21.3.2 糖的无氧酵解
        • 21.3.2.1 糖酵解途径
        • 21.3.2.2 乳酸生成
        • 21.3.2.3 糖酵解能量生成
        • 21.3.2.4 糖酵解的调节
        • 21.3.2.5 糖酵解的生理意义和临床联系
        • 21.3.2.6 如何学习代谢?
      • 21.3.3 糖的有氧氧化
        • 21.3.3.1 反应过程-丙酮酸氧化
        • 21.3.3.2 反应过程-柠檬酸循环1
        • 21.3.3.3 柠檬酸循环2--三羧酸循环总结
        • 21.3.3.4 柠檬酸循环3--有氧氧化的调节
        • 21.3.3.5 糖有氧氧化的生理意义
        • 21.3.3.6 糖酵解与有氧氧化的协调
      • 21.3.4 磷酸戊糖途径
        • 21.3.4.1 磷酸戊糖途径反应过程
        • 21.3.4.2 磷酸戊糖途径生理意义
      • 21.3.5 糖醛酸代谢
      • 21.3.6 糖异生
        • 21.3.6.1 糖异生代谢途径
        • 21.3.6.2 糖异生原料
        • 21.3.6.3 糖异生调节
        • 21.3.6.4 糖异生生理意义
      • 21.3.7 糖原合成与分解
        • 21.3.7.1 反应过程、分支酶作用及合成起始
        • 21.3.7.2 反应过程及脱枝酶
        • 21.3.7.3 变构、化学修饰和临床的相关性
      • 21.3.8 血糖与血糖调节
    • 21.4 必交作业
  • 22 生物氧化
    • 22.1 前置问题及学习目标
    • 22.2 生物氧化的概述
    • 22.3 线粒体氧化体系
      • 22.3.1 呼吸链
        • 22.3.1.1 呼吸链的组成成分
        • 22.3.1.2 呼吸链的排列次序
      • 22.3.2 氧化磷酸化
        • 22.3.2.1 氧化磷酸化的偶联数目与偶联部位
        • 22.3.2.2 氧化磷酸化的偶联机制
        • 22.3.2.3 ATP合酶
        • 22.3.2.4 氧化磷酸化的影响因素
      • 22.3.3 ATP的转运与储存
      • 22.3.4 胞液NADH的氧化
    • 22.4 其它氧化体系
    • 22.5 必交作业
  • 23 脂类代谢
    • 23.1 前置问题及学习目标
    • 23.2 脂类概述
      • 23.2.1 脂类的一般概念
      • 23.2.2 脂类的分布与生理功能
      • 23.2.3 脂类的消化和吸收
    • 23.3 脂肪的分解代谢
      • 23.3.1 脂肪动员与激素敏感脂肪酶
      • 23.3.2 脂肪酸的氧化分解
      • 23.3.3 酮体的生成与利用
      • 23.3.4 甘油的氧化分解
    • 23.4 脂肪的合成代谢
      • 23.4.1 脂肪酸的合成部位与原料
      • 23.4.2 丙二酰CoA的合成
      • 23.4.3 软脂酸的合成
      • 23.4.4 脂肪酸链的延长
      • 23.4.5 不饱和脂肪酸的合成
      • 23.4.6 多不饱和脂肪酸的衍生物
      • 23.4.7 3-磷酸甘油的合成
      • 23.4.8 脂肪的合成
    • 23.5 磷脂的代谢
      • 23.5.1 磷脂的分类、结构与功能
      • 23.5.2 甘油磷脂的代谢
      • 23.5.3 鞘磷脂的代谢
    • 23.6 胆固醇代谢
      • 23.6.1 胆固醇的合成
      • 23.6.2 胆固醇在体内的转变与排泄
    • 23.7 血浆脂蛋白代谢
      • 23.7.1 血脂
      • 23.7.2 血浆脂蛋白的分类、组成及结构
      • 23.7.3 血浆脂蛋白代谢
    • 23.8 必交作业
  • 24 氨基酸代谢
    • 24.1 前置问题及学习目标
    • 24.2 氨基酸的生理功能与营养价值
    • 24.3 体内氨基酸的来源
      • 24.3.1 蛋白质的消化、吸收和腐败
      • 24.3.2 体内氨基酸的降解
      • 24.3.3 非必需氨基酸的合成
      • 24.3.4 氨基酸代谢池
    • 24.4 氨基酸的分解代谢
      • 24.4.1 氨基酸的脱氨基作用
        • 24.4.1.1 转氨基作用
        • 24.4.1.2 氧化脱氨
        • 24.4.1.3 联合脱氨
        • 24.4.1.4 其他脱氨方式
      • 24.4.2 氨的代谢
        • 24.4.2.1 氨的来源与去路
        • 24.4.2.2 氨的转运
        • 24.4.2.3 尿素的合成
      • 24.4.3 α-酮酸的代谢
    • 24.5 氨基酸的分类代谢
      • 24.5.1 氨基酸的脱羧基作用
      • 24.5.2 一碳单位的代谢
      • 24.5.3 含硫氨基酸的代谢
      • 24.5.4 肌酸的代谢
      • 24.5.5 芳香族氨基酸的代谢
      • 24.5.6 支链氨基酸的代谢
    • 24.6 必交作业
  • 25 核苷酸代谢
    • 25.1 前置问题及学习目标
    • 25.2 嘌呤核苷酸代谢
      • 25.2.1 嘌呤核苷酸的合成代谢
        • 25.2.1.1 嘌呤核苷酸的从头合成途径
        • 25.2.1.2 嘌呤核苷酸的补救合成途径
      • 25.2.2 嘌呤核苷酸的分解代谢
    • 25.3 嘧啶核苷酸代谢
    • 25.4 脱氧核糖核苷酸的合成
      • 25.4.1 核苷酸的抗代谢物
  • 26 DNA的生物合成
    • 26.1 前置问题及学习目标
    • 26.2 DNA复制—导言
    • 26.3 DNA复制原则
      • 26.3.1 半保留复制
      • 26.3.2 双向复制
      • 26.3.3 半不连续复制
    • 26.4 DNA复制过程所需酶
      • 26.4.1 解螺旋酶
      • 26.4.2 拓扑异构酶
      • 26.4.3 单链DNA结合蛋白
      • 26.4.4 引物酶
      • 26.4.5 聚合酶
      • 26.4.6 连接酶
    • 26.5 DNA复制过程起始,延长和终止
    • 26.6 逆转录
    • 26.7 DNA损伤与修复--损伤
    • 26.8 DNA损伤与修复--修复
    • 26.9 必交作业
  • 27 RNA的生物合成
    • 27.1 前置问题及学习目标
    • 27.2 概述
    • 27.3 RNA 转录体系
      • 27.3.1 RNA聚合酶
      • 27.3.2 DNA 转录模板
      • 27.3.3 真核和原核的启动子特点和功能
      • 27.3.4 终止子和增强子
    • 27.4 RNA 生物合成过程
      • 27.4.1 原核生物RNA转录
      • 27.4.2 真核生物RNA转录
    • 27.5 RNA 转录后加工
      • 27.5.1 原核细胞RNA转录后加工
      • 27.5.2 真核细胞RNA转录后加工
        • 27.5.2.1 rRNA和tRNA的转录后加工
        • 27.5.2.2 mRNA的转录后加工
    • 27.6 RNA 复制
    • 27.7 必交作业
  • 28 蛋白质的翻译
    • 28.1 前置问题及学习目标
    • 28.2 概述
    • 28.3 蛋白质生物合成体系
      • 28.3.1 遗传密码载体-mRNA
      • 28.3.2 氨基酸载体—tRNA/adaptor
      • 28.3.3 蛋白质合成场所: 核糖体(Ribosomes)
    • 28.4 蛋白质生物合成过程
      • 28.4.1 氨基酸的活化
      • 28.4.2 翻译的起始
      • 28.4.3 翻译的延长
      • 28.4.4 翻译的终止
      • 28.4.5 总结蛋白质生物合成过程
      • 28.4.6 真核生物蛋白质生物合成的主要区别
      • 28.4.7 总结参与蛋白质翻译合成的因子
      • 28.4.8 理解遗传信息传递在科研的应用
    • 28.5 蛋白质生物合成后加工(PTM)
      • 28.5.1 一级结构加工
      • 28.5.2 高级结构加工
      • 28.5.3 蛋白质折叠异常所导致的疾病
      • 28.5.4 蛋白质的靶向输送(protein targeting)
    • 28.6 蛋白质翻译的抑制
      • 28.6.1 抗生素类
      • 28.6.2 干扰蛋白质生物合成的活性物质
    • 28.7 必交作业
  • 29 蛋白质的结构和功能
    • 29.1 前置问题及学习目标
    • 29.2 蛋白质的分子组成
      • 29.2.1 氨基酸是蛋白质的基本组成单位
        • 29.2.1.1 氨基酸的基本结构
        • 29.2.1.2 氨基酸的分类
        • 29.2.1.3 氨基酸的理化性质
      • 29.2.2 蛋白质是氨基酸通过肽键相连而成的生物大分子
    • 29.3 蛋白质的分子结构
      • 29.3.1 氨基酸的排列顺序是蛋白质的一级结构
      • 29.3.2 多肽链主链的局部空间构象是蛋白质的二级结构
        • 29.3.2.1 肽单元
        • 29.3.2.2 主要二级结构形式
        • 29.3.2.3 超二级结构-模体
      • 29.3.3 侧链R基团的相互作用形成蛋白质的三级结构
      • 29.3.4 亚基缔合成分子—蛋白质的四级结构
    • 29.4 蛋白质结构与功能的关系
      • 29.4.1 蛋白质一级结构是空间构象和功能的基础
      • 29.4.2 蛋白质的功能依赖其特定的空间构象
    • 29.5 蛋白质的理化性质及应用
      • 29.5.1 蛋白质具有和氨基酸相同的和自身特殊的理化性质
      • 29.5.2 利用蛋白质的性质分离纯化蛋白质
    • 29.6 必交作业
  • 30 核酸的结构与功能
    • 30.1 前置问题及学习目标
    • 30.2 核酸的化学组成和一级结构
      • 30.2.1 核酸分类及基本组成单位—核苷酸
      • 30.2.2 核酸的一级结构是核苷酸的排列顺序
    • 30.3 DNA的结构和功能
      • 30.3.1 DNA的二级结构是双螺旋结构
      • 30.3.2 DNA的三级结构是超螺旋结构
    • 30.4 RNA的结构与功能
      • 30.4.1 mRNA从DNA转录遗传信息指导蛋白质合成
      • 30.4.2 tRNA是蛋白质合成的接合器分子
      • 30.4.3 rRNA参与蛋白质的合成场所-核糖体的组成
      • 30.4.4 细胞内其它小分子RNA参与体内重要过程
    • 30.5 核酸的理化性质
      • 30.5.1 核酸的酸性和紫外吸收特性
      • 30.5.2 核酸的变性和分子杂交技术
    • 30.6 必交作业
  • 31 酶与辅酶
    • 31.1 前置问题及学习目标
    • 31.2 酶的分子结构
      • 31.2.1 酶的分子组成
      • 31.2.2 酶的空间结构
    • 31.3 酶的分类与命名
    • 31.4 酶的反应特点与机制
      • 31.4.1 酶促反应的特点
      • 31.4.2 酶促反应的机制
    • 31.5 酶促反应的动力学
      • 31.5.1 底物浓度对反应速度的影响
      • 31.5.2 酶浓度对反应速度的影响
      • 31.5.3 温度对反应速度的影响
      • 31.5.4 pH对反应速度的影响
      • 31.5.5 抑制剂对反应速度的影响
      • 31.5.6 激活剂对酶促反应速度的影响
    • 31.6 酶活性的调节
      • 31.6.1 酶原与酶原激活
      • 31.6.2 酶的变构调节
      • 31.6.3 酶的共价修饰调节
      • 31.6.4 细胞外基质
      • 31.6.5 酶含量的调节
      • 31.6.6 同工酶
    • 31.7 必交作业
  • 32 糖复合物
    • 32.1 前置问题及学习目标
    • 32.2 糖蛋白
      • 32.2.1 糖蛋白的结构
      • 32.2.2 糖蛋白的功能
    • 32.3 蛋白聚糖
      • 32.3.1 蛋白聚糖的结构
      • 32.3.2 蛋白聚糖的功能
    • 32.4 糖脂
  • 33 糖代谢
    • 33.1 前置问题及学习目标
    • 33.2 代谢概述
    • 33.3 糖代谢
      • 33.3.1 糖代谢概述
        • 33.3.1.1 糖的生理功能
        • 33.3.1.2 糖的消化
        • 33.3.1.3 糖的吸收
        • 33.3.1.4 糖的转运
      • 33.3.2 糖的无氧酵解
        • 33.3.2.1 糖酵解途径
        • 33.3.2.2 乳酸生成
        • 33.3.2.3 糖酵解能量生成
        • 33.3.2.4 糖酵解的调节
        • 33.3.2.5 糖酵解的生理意义和临床联系
        • 33.3.2.6 如何学习代谢?
      • 33.3.3 糖的有氧氧化
        • 33.3.3.1 反应过程-丙酮酸氧化
        • 33.3.3.2 反应过程-柠檬酸循环1
        • 33.3.3.3 柠檬酸循环2--三羧酸循环总结
        • 33.3.3.4 柠檬酸循环3--有氧氧化的调节
        • 33.3.3.5 糖有氧氧化的生理意义
        • 33.3.3.6 糖酵解与有氧氧化的协调
      • 33.3.4 磷酸戊糖途径
        • 33.3.4.1 磷酸戊糖途径反应过程
        • 33.3.4.2 磷酸戊糖途径生理意义
      • 33.3.5 糖醛酸代谢
      • 33.3.6 糖异生
        • 33.3.6.1 糖异生代谢途径
        • 33.3.6.2 糖异生原料
        • 33.3.6.3 糖异生调节
        • 33.3.6.4 糖异生生理意义
      • 33.3.7 糖原合成与分解
        • 33.3.7.1 反应过程、分支酶作用及合成起始
        • 33.3.7.2 反应过程及脱枝酶
        • 33.3.7.3 变构、化学修饰和临床的相关性
      • 33.3.8 血糖与血糖调节
    • 33.4 必交作业
  • 34 生物氧化
    • 34.1 前置问题及学习目标
    • 34.2 生物氧化的概述
    • 34.3 线粒体氧化体系
      • 34.3.1 呼吸链
        • 34.3.1.1 呼吸链的组成成分
        • 34.3.1.2 呼吸链的排列次序
      • 34.3.2 氧化磷酸化
        • 34.3.2.1 氧化磷酸化的偶联数目与偶联部位
        • 34.3.2.2 氧化磷酸化的偶联机制
        • 34.3.2.3 ATP合酶
        • 34.3.2.4 氧化磷酸化的影响因素
      • 34.3.3 ATP的转运与储存
      • 34.3.4 胞液NADH的氧化
    • 34.4 其它氧化体系
    • 34.5 必交作业
  • 35 脂类代谢
    • 35.1 前置问题及学习目标
    • 35.2 脂类概述
      • 35.2.1 脂类的一般概念
      • 35.2.2 脂类的分布与生理功能
      • 35.2.3 脂类的消化和吸收
    • 35.3 脂肪的分解代谢
      • 35.3.1 脂肪动员与激素敏感脂肪酶
      • 35.3.2 脂肪酸的氧化分解
      • 35.3.3 酮体的生成与利用
      • 35.3.4 甘油的氧化分解
    • 35.4 脂肪的合成代谢
      • 35.4.1 脂肪酸的合成部位与原料
      • 35.4.2 丙二酰CoA的合成
      • 35.4.3 软脂酸的合成
      • 35.4.4 脂肪酸链的延长
      • 35.4.5 不饱和脂肪酸的合成
      • 35.4.6 多不饱和脂肪酸的衍生物
      • 35.4.7 3-磷酸甘油的合成
      • 35.4.8 脂肪的合成
    • 35.5 磷脂的代谢
      • 35.5.1 磷脂的分类、结构与功能
      • 35.5.2 甘油磷脂的代谢
      • 35.5.3 鞘磷脂的代谢
    • 35.6 胆固醇代谢
      • 35.6.1 胆固醇的合成
      • 35.6.2 胆固醇在体内的转变与排泄
    • 35.7 血浆脂蛋白代谢
      • 35.7.1 血脂
      • 35.7.2 血浆脂蛋白的分类、组成及结构
      • 35.7.3 血浆脂蛋白代谢
    • 35.8 必交作业
  • 36 氨基酸代谢
    • 36.1 前置问题及学习目标
    • 36.2 氨基酸的生理功能与营养价值
    • 36.3 体内氨基酸的来源
      • 36.3.1 蛋白质的消化、吸收和腐败
      • 36.3.2 体内氨基酸的降解
      • 36.3.3 非必需氨基酸的合成
      • 36.3.4 氨基酸代谢池
    • 36.4 氨基酸的分解代谢
      • 36.4.1 氨基酸的脱氨基作用
        • 36.4.1.1 转氨基作用
        • 36.4.1.2 氧化脱氨
        • 36.4.1.3 联合脱氨
        • 36.4.1.4 其他脱氨方式
      • 36.4.2 氨的代谢
        • 36.4.2.1 氨的来源与去路
        • 36.4.2.2 氨的转运
        • 36.4.2.3 尿素的合成
      • 36.4.3 α-酮酸的代谢
    • 36.5 氨基酸的分类代谢
      • 36.5.1 氨基酸的脱羧基作用
      • 36.5.2 一碳单位的代谢
      • 36.5.3 含硫氨基酸的代谢
      • 36.5.4 肌酸的代谢
      • 36.5.5 芳香族氨基酸的代谢
      • 36.5.6 支链氨基酸的代谢
    • 36.6 必交作业
  • 37 核苷酸代谢
    • 37.1 前置问题及学习目标
    • 37.2 嘌呤核苷酸代谢
      • 37.2.1 嘌呤核苷酸的合成代谢
        • 37.2.1.1 嘌呤核苷酸的从头合成途径
        • 37.2.1.2 嘌呤核苷酸的补救合成途径
      • 37.2.2 嘌呤核苷酸的分解代谢
    • 37.3 嘧啶核苷酸代谢
    • 37.4 脱氧核糖核苷酸的合成
      • 37.4.1 核苷酸的抗代谢物
  • 38 DNA的生物合成
    • 38.1 前置问题及学习目标
    • 38.2 DNA复制—导言
    • 38.3 DNA复制原则
      • 38.3.1 半保留复制
      • 38.3.2 双向复制
      • 38.3.3 半不连续复制
    • 38.4 DNA复制过程所需酶
      • 38.4.1 解螺旋酶
      • 38.4.2 拓扑异构酶
      • 38.4.3 单链DNA结合蛋白
      • 38.4.4 引物酶
      • 38.4.5 聚合酶
      • 38.4.6 连接酶
    • 38.5 DNA复制过程起始,延长和终止
    • 38.6 逆转录
    • 38.7 DNA损伤与修复--损伤
    • 38.8 DNA损伤与修复--修复
    • 38.9 必交作业
  • 39 RNA的生物合成
    • 39.1 前置问题及学习目标
    • 39.2 概述
    • 39.3 RNA 转录体系
      • 39.3.1 RNA聚合酶
      • 39.3.2 DNA 转录模板
      • 39.3.3 真核和原核的启动子特点和功能
      • 39.3.4 终止子和增强子
    • 39.4 RNA 生物合成过程
      • 39.4.1 原核生物RNA转录
      • 39.4.2 真核生物RNA转录
    • 39.5 RNA 转录后加工
      • 39.5.1 原核细胞RNA转录后加工
      • 39.5.2 真核细胞RNA转录后加工
        • 39.5.2.1 rRNA和tRNA的转录后加工
        • 39.5.2.2 mRNA的转录后加工
    • 39.6 RNA 复制
    • 39.7 必交作业
  • 40 蛋白质的翻译
    • 40.1 前置问题及学习目标
    • 40.2 概述
    • 40.3 蛋白质生物合成体系
      • 40.3.1 遗传密码载体-mRNA
      • 40.3.2 氨基酸载体—tRNA/adaptor
      • 40.3.3 蛋白质合成场所: 核糖体(Ribosomes)
    • 40.4 蛋白质生物合成过程
      • 40.4.1 氨基酸的活化
      • 40.4.2 翻译的起始
      • 40.4.3 翻译的延长
      • 40.4.4 翻译的终止
      • 40.4.5 总结蛋白质生物合成过程
      • 40.4.6 真核生物蛋白质生物合成的主要区别
      • 40.4.7 总结参与蛋白质翻译合成的因子
      • 40.4.8 理解遗传信息传递在科研的应用
    • 40.5 蛋白质生物合成后加工(PTM)
      • 40.5.1 一级结构加工
      • 40.5.2 高级结构加工
      • 40.5.3 蛋白质折叠异常所导致的疾病
      • 40.5.4 蛋白质的靶向输送(protein targeting)
    • 40.6 蛋白质翻译的抑制
      • 40.6.1 抗生素类
      • 40.6.2 干扰蛋白质生物合成的活性物质
    • 40.7 必交作业
前置问题及学习目标



学习目标

知识单元知识点
序号描述序号描述要求
1逆转录1逆转录掌握
逆转录也称为反转录,是以  RNA 为模板合成互补的 DNA的过程。 逆转录是某些生物的特殊复制方式
2逆转录酶掌握
催化逆转录过程的酶,①  RNA 指导的 DNA 聚合酶( RDDP )活性;② RNA 酶( RNase )活性;③ DNA 指导的 DNA 聚合酶( DDDP  )活性。逆转录酶没有3’→5’外切酶的活性,因此没有校读功能,逆转录作用的错误率相对较高。
2原核转录的体系1RNA聚合酶掌握
原核生物的RNA聚合酶兼有合成  mRNA, tRNA 和 rRNA 的功能。由五种亚基(α,β,β′,ω,σ)组成的六聚体蛋白质(α2ββ′ωσ); 其中β亚基结合Mg2+ 是催化形成磷酸二酯键的催化亚基,ω亚基功能未知,通常将α2ββ′ 4个亚基组成的复合物为核心酶( Core enzyme  );σ亚基为可解离成分,主要识别DNA上的启动子序列,核心酶加上 σ 亚基成为全酶α2ββ′σ( Holo-enzyme ) ,最常见的σ70 (相对分子质量70 kDa )是辨认典型转录起始点的蛋白因子
3真核转录体系1RNA聚合酶I掌握
RNA  聚合酶Ⅰ    是45SrRNA 前体,对α鹅膏蕈碱不敏感。
2RNA聚合酶II掌握
RNA  聚合酶Ⅱ是转录mRNA和一些小RNA的主要酶,目前研究比较热的microRNA主要就是由RNA 聚合酶Ⅱ催化合成。 RNA  聚合酶Ⅱ是一多亚基组成的复合物,其中最大亚基的羧基末端有一段共有序列为 Tyr-Ser-Pro-Thr-Ser-Pro-Ser  的重复序列片段,这是一段由含羟基氨基酸为主体组成的重复序列,称为羧基末端结构域( Carboxyl terminal domain, CTD ), CTD  的磷酸化与去磷酸化在转录从起始过渡到延长过程中有重要作用。利用α鹅膏蕈碱(α-amanitine )的抑制作用可将真核生物三类 RNA 聚合酶区分开。
3RNA聚合酶III掌握
RNA  聚合酶Ⅱ     参与mRNA , snRNA的合成,对α鹅膏蕈碱敏感。
4RNA聚合酶mt熟悉
RNA 聚合酶  Mt    参与合成线粒体内的 RNAs          对α鹅膏蕈碱不敏感, 对利福平敏感。
4转录过程1模板链掌握
体内 DNA  两条链中仅有一条链可用于转录,称为模板链,各个基因的模板链并不一定是同一条链。
2编码链掌握
编码链是与模板链互补的  DNA 链,不具模板功能,但其碱基序列与新合成的 RNA 链相对应(只是 T 被 U 取代)。RNA转录在时空上并不是随机的,而是高度有序的。
3启动子掌握
转录开始时  RNA 聚合酶识别、结合和启动转录的一段 DNA 序列,位于模板链DNA的上游。
4终止子掌握
提供转录终止信号的  DNA 序列。原核生物 RNA 转录终止子有两类,即不依赖于Rho(ρ)因子的终止子和依赖于 Rho(ρ)因子的终止子。
5操纵子掌握
操纵子指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。转录的功能单位。很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA序列。主要见于原核生物的转录调控,如乳糖操纵子、阿拉伯糖操纵子、组氨酸操纵子、色氨酸操纵子等
6σ因子掌握
σ因子主要识别DNA上的启动子序列,RNA聚合酶的一个亚基
7ρ因子依赖终止掌握
Rho因子是具有ATP  酶和解螺旋酶的活性的蛋白分子,与转录产物 RNA 结合,使RNA 聚合酶停止转录,其自身的ATP 酶和解螺旋酶的活性使 DNA ∶ RNA  杂化双链拆离,转录产物 RNA释放出来而完成转录。
8非ρ因子依赖终止DNA模板的终止信号中有由 GC  富集区组成的反向重复序列(回文结构) ,转录形成的RNA具有相应的发夹结构进而阻碍 RNA 聚合酶的行进,从而停止转录。掌握
9转录因子掌握
与DNA直接或间接结合参与转录调节的蛋白因子称为转录因子
10断裂基因掌握
真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因。
11外显子掌握
指的是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。
12内含子掌握
断裂基因的非编码区,可被转录,但在mRNA加工过程中被剪切掉,故成熟mRNA上无内含子编码序列。内含子可能含有"旧码",就是在进化过程中丧失功能的基因部分。
5真核生物mRNA转录后加工15‘端加帽掌握
以特殊的5’-5’三磷酸连接键相连,在新生  RNA 的5’末端加上鸟嘌呤核苷酸;继而在鸟嘌呤7-甲基转移酶(Guanine 7-methyltranferase)催化下,由腺苷蛋氨酸( SAM  )提供甲基,在新加入的 GMP 的 N 7位甲基化,形成帽子结构( m7GpppGp  ),甲基化还可以发生在帽子结构后第1位和第二位核苷酸核糖的2’-OH上。
23‘端加尾掌握
除了组蛋白的  mRNA ,在3’端通常都有8~250个腺苷酸残基构成多聚腺苷酸( polyA )尾。 polyA 尾是在 U7-snRNP 的协助下识别 hnRNA  3’末端转录终止修饰点 AAUAA 保守序列,在AAUAA序列的下游由特异的核酸内切酶( RNase Ⅲ )催化切除多余的附加序列,由多聚腺苷酸聚合酶(  polyadenylate polymerase , PAP )催化加入 A 。
3剪接掌握
去除内含子序列并连接外显子
4RNA编辑掌握
RNA  编辑是在生成 mRNA 分子后,通过在编码区域内插入、去除或置换核苷酸,从而改变来自 DNA 模板的遗传信息,翻译生成不同于模板 DNA  所编码的氨基酸序列。 典型的RNA编辑是载脂蛋白B(Apolipoprotein B)的转录后加工。