目录

  • 1 学习通使用指南
    • 1.1 超星尔雅通识课网络学习平台使用手册
    • 1.2 学生手机上如何学习智慧课程?
    • 1.3 如何使用超星智慧考试系统进行线上考试(学生版)
    • 1.4 如何使用知识图谱-学生端
    • 1.5 如何评价课程
  • 2 高等数学B1导学
    • 2.1 课程思政引言
    • 2.2 高等数学知识点
    • 2.3 课程介绍
    • 2.4 课程导学
    • 2.5 电子书
    • 2.6 教学大纲&教学进度表
  • 3 第1章 函数
    • 3.1 预备知识
    • 3.2 函数
    • 3.3 具有某种特性的函数
    • 3.4 反函数
    • 3.5 复合函数  初等函数
    • 3.6 典型例题
    • 3.7 经典档案
      • 3.7.1 神秘而有趣的数
      • 3.7.2 常用经典平面曲线档案
      • 3.7.3 常用经典曲面档案
    • 3.8 函数章节自测
  • 4 第2章 极限与连续
    • 4.1 CH2 导学
    • 4.2 数列极限
    • 4.3 函数极限
    • 4.4 函数极限的性质  函数极限的运算法则
    • 4.5 极限存在准则和两个重要极限
    • 4.6 无穷小与无穷大
    • 4.7 函数的连续性
    • 4.8 闭区间上连续函数的性质
    • 4.9 CH2 习题
    • 4.10 精品课堂
      • 4.10.1 巧解两类重要极限
      • 4.10.2 有理分式函数极限求解技巧
      • 4.10.3 典型习题
      • 4.10.4 图解极坐标中的点
      • 4.10.5 图解介值定理
    • 4.11 精进课堂
    • 4.12 数学实验
    • 4.13 极限与连续章节自测
  • 5 导数与微分
    • 5.1 CH3 导学
    • 5.2 导数概念
    • 5.3 求导法则及几类特殊函数的求导方法
    • 5.4 高阶导数
    • 5.5 函数的微分
    • 5.6 CH3 习题
    • 5.7 精品课堂
      • 5.7.1 图解导数几何意义
      • 5.7.2 图解导数物理意义
      • 5.7.3 图解微分几何意义
      • 5.7.4 典型习题
    • 5.8 精进课堂
    • 5.9 数学实验
    • 5.10 导数与微分章节测试
  • 6 微分中值定理与导数的应用
    • 6.1 CH4 导学
    • 6.2 中值定理
    • 6.3 洛必达法则
    • 6.4 函数的单调性与曲线的凹凸性
    • 6.5 函数的极值与最值
    • 6.6 不等式的证明
    • 6.7 函数图形的描绘
    • 6.8 曲率*
    • 6.9 CH4 习题
    • 6.10 精品课堂
      • 6.10.1 中值定理
      • 6.10.2 典型习题
    • 6.11 精进课堂
    • 6.12 数学实验
    • 6.13 微分应用章节自测
  • 7 不定积分
    • 7.1 CH5 导学
    • 7.2 不定积分的概念与性质
    • 7.3 换元积分法
    • 7.4 分部积分法
    • 7.5 几种特殊函数的积分
    • 7.6 典型习题
    • 7.7 精进课堂
    • 7.8 不定积分章节自测
  • 8 定积分
    • 8.1 CH6 导学
    • 8.2 定积分的概念与性质
    • 8.3 微积分基本公式
    • 8.4 定积分的计算
    • 8.5 反常积分
    • 8.6 定积分在几何学上的应用
    • 8.7 定积分在物理学上的应用
    • 8.8 典型习题
    • 8.9 精进课堂
    • 8.10 数学实验
    • 8.11 定积分章节自测
  • 9 微分方程
    • 9.1 微分方程的基本概念
    • 9.2 可分离变量的微分方程
    • 9.3 齐次方程
    • 9.4 一阶线性微分方程
    • 9.5 可降阶的高阶微分方程
    • 9.6 高阶线性微分方程
    • 9.7 常系数齐次线性微分方程
    • 9.8 常系数非齐次线性微分方程
    • 9.9 章节总结
  • 10 期末点睛
    • 10.1 高数知识汇总
    • 10.2 各章习题冲刺练习
    • 10.3 各章重难点剖析
    • 10.4 各章精品串烧
    • 10.5 期末冲刺100题
    • 10.6 模拟演练
  • 11 数学文化讲堂
    • 11.1 数学史文化
      • 11.1.1 古代时期
      • 11.1.2 中世纪前后
      • 11.1.3 微积分时期
    • 11.2 课本中的数学家
    • 11.3 中国数学家精神
      • 11.3.1 华罗庚:人民的数学家
      • 11.3.2 陈省身:整体微分几何之父
    • 11.4 数学诗歌
    • 11.5 数学之美
    • 11.6 数学科学馆
    • 11.7 数学电影院
  • 12 考研进阶篇(大四考研选修)
    • 12.1 考研导学
    • 12.2 考研大纲
    • 12.3 考情及动态分析
    • 12.4 考研笔记
    • 12.5 考研讲义
    • 12.6 基础实训
    • 12.7 应用题实训
    • 12.8 冲刺实训
    • 12.9 考研真题及解答
微积分基本公式
  • 1 思政导论
  • 2 教学视频
  • 3 教学课件
  • 4 达标测试
  • 5 提升测试
  • 6 反思探究
  • 7 数学文化

  1. 科学探索的艰辛与坚持:“牛顿与莱布尼兹在微积分领域的独立探索,展现了科学家们在追求真理道路上不畏艰难、坚持不懈的精神。这告诉我们,无论面对何种挑战,只要持之以恒,终能有所成就。”

  2. 创新思维与独立思考:“两位科学家各自从不同的角度和方法出发,独立发明了微积分,这体现了创新思维和独立思考的重要性。在学习和科研中,我们也应勇于打破常规,敢于提出新观点、新方法。”

  3. 学术诚信与尊重原创:“尽管存在争议,但科学界最终承认了牛顿和莱布尼兹在微积分领域的独立贡献。这提醒我们,在学术研究中要坚守诚信原则,尊重他人的原创成果,共同推动科学的进步。”

  4. 合作与交流的价值:“牛顿和莱布尼兹的争论虽然激烈,但也促进了微积分理论的完善和发展。这告诉我们,在科研和学术活动中,合作与交流是不可或缺的。通过合作,我们可以集思广益,共同解决难题;通过交流,我们可以相互学习,共同进步。”

  5. 历史视角与全局观念:“回顾微积分的发展历程,我们可以看到科学理论的演进往往不是一蹴而就的,而是需要经历长时间的积累和沉淀。因此,在学习和研究中,我们要具备历史视角和全局观念,了解学科发展的脉络和趋势,从而更好地把握未来方向。”

  6. 辩证思维与批判精神:“牛顿和莱布尼兹的争论也体现了辩证思维和批判精神的重要性。在面对复杂问题时,我们要学会运用辩证思维进行分析和判断;在接受新知识时,我们要保持批判精神,勇于质疑和探究。”

  7. 爱国情怀与民族自信:“作为中国人,我们还应从微积分的发展历程中汲取力量,增强爱国情怀和民族自信。中国古代数学也有着辉煌的成就和深厚的底蕴,我们应该继承和发扬这一优良传统,为祖国的科技进步和繁荣富强贡献自己的力量。”