

伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。后来泊松、切比雪夫、马尔科夫、格涅坚科等众多的数学家都有重大成就,弱大数定律的研究已经趋于完善,最好的结果是属于格涅坚科,他找到了弱大数定律成立的充要条件,而且没有任何独立性或同分布的要求。在二十世纪初,博雷尔引入测度论的方法之后,将伯努利大数定理推广到强大数定律开创了强大数定律的研究,之后工作最有成就的属于柯尔莫哥洛夫,他不但完成了概率的公理化,还找到了独立同分布下的强大数定律的充要条件。如今,对强大数定律的研究仍然是难题,数学家们在向着不独立随机变量序列服从强大数定律的条件努力。


例如,在重复投掷一枚硬币的随机试验中,观测投掷了n次硬币中出现正面的次数。不同的n次试验,出现正面的频率(出现正面次数与n之比)可能不同,但当试验的次数n越来越大时,出现正面的频率将大体上逐渐接近于1/2。又如称量某一物体的重量,假如衡器不存在系统偏差,由于衡器的精度等各种因素的影响,对同一物体重复称量多次,可能得到多个不同的重量数值,但它们的算术平均值一般来说将随称量次数的增加而逐渐接近于物体的真实重量。
几乎处处收敛与依概率收敛不同。生活例子:开始上课了,慢慢地大家都安静下来,这是几乎处处收敛。绝大多数同学都安静下来,但每一个人都在不同的时间不安静,这是依概率收敛。


德莫佛,法文原名 Abraham de Moivre,(1667.05.26法国-1754.11.27英国伦敦),法国数学家。德莫佛对数学最著名的贡献是德莫佛公式(de Moivre Formula)和德莫佛-拉普拉斯中心极限定理,以及他对正态分布和概率理论的研究。德莫佛还写了一本概率理论的教科书,The Doctrine of Chances,据说这本书被投机主义者(gambler)高度赞扬。德莫佛是解析几何和概率理论的先驱之一;他还最早发现了一个二项分布的近似公式,这一公式被认为是正态分布的首次露面。
大数法则又称“大数定律”或“平均法则”。人们在长期的实践中发现,在随机现象的大量重复中往往出现几乎必然的规律,即大数法则。此法则的意义是:风险单位数量愈多,实际损失的结果会愈接近从无限单位数量得出的预期损失可能的结果。据此,保险人就可以比较精确的预测危险,合理的厘定保险费率,使在保险期限内收取的保险费和损失赔偿及其它费用开支相平衡。大数法则是近代保险业赖以建立的数理基础。保险公司正是利用在个别情形下存在的不确定性将在大数中消失的这种规则性,来分析承保标的发生损失的相对稳定性。按照大数法则,保险公司承保的每类标的数目必须足够大,否则,缺少一定的数量基础,就不能产生所需要的数量规律。但是,任何一家保险公司都有它的局限性,即承保的具有同一风险性质的单位是有限的,这就需要通过再保险来扩大风险单位及风险分散面。

