概率统计a3

田红娟

目录

  • 1 第一章
    • 1.1 随机试验 样本空间 随机事件——小明的一天
    • 1.2 事件的关系和运算---中国游客不带现金走遍世界
    • 1.3 古典概型——美国总统的生日
    • 1.4 几何概型——天上会掉馅饼么
    • 1.5 概率公理化定义——概率的前世今生
    • 1.6 概率的性质——配对问题
    • 1.7 条件概率——抽签与顺序有关吗?(一)
    • 1.8 乘法公式——抽签与顺序有关吗?(二)
    • 1.9 全概率公式——抽签与顺序有关吗?(三)
    • 1.10 贝叶斯公式——马航客机搜寻
    • 1.11 事件的相互独立性——三个臭皮匠,顶个诸葛亮
  • 2 第二章
    • 2.1 随机变量的概念——现代概率的开端
    • 2.2 两点分布,二项分布——考试全凭瞎猜能及格么
    • 2.3 泊松分布、泊松定理——保险公司能亏本么
    • 2.4 几何分布与超几何分布——科比·布莱恩特的投篮
    • 2.5 一维随机变量的分布函数---随机变量的身份证特征
    • 2.6 连续随机变量及其概率密度——一切推理都必须从观察和实验中来
    • 2.7 均匀分布——几何分布的概率模型
    • 2.8 指数分布——钻石恒久远,一颗永流传
    • 2.9 正态分布——你坐公共汽车被车门碰过头么?
    • 2.10 随机变量函数的分布——一盒粉饼可以用多久?
  • 3 第三章
    • 3.1 二维随机变量的分布函数、二维离散型——中奖概率有多大?
    • 3.2 二维连续型随机变量的联合密度函数和边缘密度函数——汽车车灯视野的设计
    • 3.3 边缘分布函数,边缘分布律——横看成岭侧成峰,远近高低各不同
    • 3.4 离散型随机变量的条件分布律——“学神、学霸”论
    • 3.5 条件分布函数,连续型随机变量的条件概率密度——圆盘上的思考
    • 3.6 两个随机变量的独立性——猜猜他们有办公室恋情吗?
    • 3.7 二维离散型随机变量函数的分布——学府路红绿灯
    • 3.8 二维连续型随机变量函的分布、 和的分布——食堂窗口的个数
    • 3.9 最大与最小值的分布——电路系统的寿命
  • 4 第四章
    • 4.1 期望的概念、离散型随机变量期望的计算——赌金如何分配?
    • 4.2 连续型随机变量期望的计算——如何分辨毒豆芽?
    • 4.3 随机变量函数的期望——中国人的骄傲“乒乓球”
    • 4.4 数学期望的性质——隐藏在七星彩中的秘密
    • 4.5 方差的定义及性质、离散型随机变量方差的计算——哪个方阵更整齐
    • 4.6 连续型随机变量方差的计算——几个常见分布的方差
    • 4.7 协方差及其性质、相关系数的性质 ——你幸福么?
  • 5 第五章
    • 5.1 切比雪夫不等式、协方差矩阵——心形的概率
    • 5.2 伯努利大数定律 ——概率论历史上的第一个极限定理
    • 5.3 切比雪夫大数定律——彩票要不要涨价
    • 5.4 中心极限定理——教室应该设置多少座位?
  • 6 第六章
    • 6.1 总体与样本
    • 6.2 统计量与三大分布
    • 6.3 正态总体分布
    • 6.4 t分布,F分布
  • 7 第七章
    • 7.1 矩估计
    • 7.2 极大似然估计
    • 7.3 评价估计的标准
    • 7.4 区间估计
  • 8 第八章
    • 8.1 假设检验基本思想
    • 8.2 单个正态总体均值
    • 8.3 单个正态总体方差
    • 8.4 两个正态总体参数
伯努利大数定律 ——概率论历史上的第一个极限定理






伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。后来泊松、切比雪夫、马尔科夫、格涅坚科等众多的数学家都有重大成就,弱大数定律的研究已经趋于完善,最好的结果是属于格涅坚科,他找到了弱大数定律成立的充要条件,而且没有任何独立性或同分布的要求。在二十世纪初,博雷尔引入测度论的方法之后,将伯努利大数定理推广到强大数定律开创了强大数定律的研究,之后工作最有成就的属于柯尔莫哥洛夫,他不但完成了概率的公理化,还找到了独立同分布下的强大数定律的充要条件。如今,对强大数定律的研究仍然是难题,数学家们在向着不独立随机变量序列服从强大数定律的条件努力。




例如,在重复投掷一枚硬币的随机试验中,观测投掷了n次硬币中出现正面的次数。不同的n次试验,出现正面的频率(出现正面次数与n之比)可能不同,但当试验的次数n越来越大时,出现正面的频率将大体上逐渐接近于1/2。又如称量某一物体的重量,假如衡器不存在系统偏差,由于衡器的精度等各种因素的影响,对同一物体重复称量多次,可能得到多个不同的重量数值,但它们的算术平均值一般来说将随称量次数的增加而逐渐接近于物体的真实重量。
      几乎处处收敛与依概率收敛不同。生活例子:开始上课了,慢慢地大家都安静下来,这是几乎处处收敛。绝大多数同学都安静下来,但每一个人都在不同的时间不安静,这是依概率收敛。




德莫佛,法文原名 Abraham de Moivre,(1667.05.26法国-1754.11.27英国伦敦),法国数学家。德莫佛对数学最著名的贡献是德莫佛公式(de Moivre Formula)和德莫佛-拉普拉斯中心极限定理,以及他对正态分布和概率理论的研究。德莫佛还写了一本概率理论的教科书,The Doctrine of Chances,据说这本书被投机主义者(gambler)高度赞扬。德莫佛是解析几何和概率理论的先驱之一;他还最早发现了一个二项分布的近似公式,这一公式被认为是正态分布的首次露面。
       大数法则又称“大数定律”或“平均法则”。人们在长期的实践中发现,在随机现象的大量重复中往往出现几乎必然的规律,即大数法则。此法则的意义是:风险单位数量愈多,实际损失的结果会愈接近从无限单位数量得出的预期损失可能的结果。据此,保险人就可以比较精确的预测危险,合理的厘定保险费率,使在保险期限内收取的保险费和损失赔偿及其它费用开支相平衡。大数法则是近代保险业赖以建立的数理基础。保险公司正是利用在个别情形下存在的不确定性将在大数中消失的这种规则性,来分析承保标的发生损失的相对稳定性。按照大数法则,保险公司承保的每类标的数目必须足够大,否则,缺少一定的数量基础,就不能产生所需要的数量规律。但是,任何一家保险公司都有它的局限性,即承保的具有同一风险性质的单位是有限的,这就需要通过再保险来扩大风险单位及风险分散面。