概率统计a3

田红娟

目录

  • 1 第一章
    • 1.1 随机试验 样本空间 随机事件——小明的一天
    • 1.2 事件的关系和运算---中国游客不带现金走遍世界
    • 1.3 古典概型——美国总统的生日
    • 1.4 几何概型——天上会掉馅饼么
    • 1.5 概率公理化定义——概率的前世今生
    • 1.6 概率的性质——配对问题
    • 1.7 条件概率——抽签与顺序有关吗?(一)
    • 1.8 乘法公式——抽签与顺序有关吗?(二)
    • 1.9 全概率公式——抽签与顺序有关吗?(三)
    • 1.10 贝叶斯公式——马航客机搜寻
    • 1.11 事件的相互独立性——三个臭皮匠,顶个诸葛亮
  • 2 第二章
    • 2.1 随机变量的概念——现代概率的开端
    • 2.2 两点分布,二项分布——考试全凭瞎猜能及格么
    • 2.3 泊松分布、泊松定理——保险公司能亏本么
    • 2.4 几何分布与超几何分布——科比·布莱恩特的投篮
    • 2.5 一维随机变量的分布函数---随机变量的身份证特征
    • 2.6 连续随机变量及其概率密度——一切推理都必须从观察和实验中来
    • 2.7 均匀分布——几何分布的概率模型
    • 2.8 指数分布——钻石恒久远,一颗永流传
    • 2.9 正态分布——你坐公共汽车被车门碰过头么?
    • 2.10 随机变量函数的分布——一盒粉饼可以用多久?
  • 3 第三章
    • 3.1 二维随机变量的分布函数、二维离散型——中奖概率有多大?
    • 3.2 二维连续型随机变量的联合密度函数和边缘密度函数——汽车车灯视野的设计
    • 3.3 边缘分布函数,边缘分布律——横看成岭侧成峰,远近高低各不同
    • 3.4 离散型随机变量的条件分布律——“学神、学霸”论
    • 3.5 条件分布函数,连续型随机变量的条件概率密度——圆盘上的思考
    • 3.6 两个随机变量的独立性——猜猜他们有办公室恋情吗?
    • 3.7 二维离散型随机变量函数的分布——学府路红绿灯
    • 3.8 二维连续型随机变量函的分布、 和的分布——食堂窗口的个数
    • 3.9 最大与最小值的分布——电路系统的寿命
  • 4 第四章
    • 4.1 期望的概念、离散型随机变量期望的计算——赌金如何分配?
    • 4.2 连续型随机变量期望的计算——如何分辨毒豆芽?
    • 4.3 随机变量函数的期望——中国人的骄傲“乒乓球”
    • 4.4 数学期望的性质——隐藏在七星彩中的秘密
    • 4.5 方差的定义及性质、离散型随机变量方差的计算——哪个方阵更整齐
    • 4.6 连续型随机变量方差的计算——几个常见分布的方差
    • 4.7 协方差及其性质、相关系数的性质 ——你幸福么?
  • 5 第五章
    • 5.1 切比雪夫不等式、协方差矩阵——心形的概率
    • 5.2 伯努利大数定律 ——概率论历史上的第一个极限定理
    • 5.3 切比雪夫大数定律——彩票要不要涨价
    • 5.4 中心极限定理——教室应该设置多少座位?
  • 6 第六章
    • 6.1 总体与样本
    • 6.2 统计量与三大分布
    • 6.3 正态总体分布
    • 6.4 t分布,F分布
  • 7 第七章
    • 7.1 矩估计
    • 7.2 极大似然估计
    • 7.3 评价估计的标准
    • 7.4 区间估计
  • 8 第八章
    • 8.1 假设检验基本思想
    • 8.2 单个正态总体均值
    • 8.3 单个正态总体方差
    • 8.4 两个正态总体参数
协方差及其性质、相关系数的性质 ——你幸福么?




  设(X,Y)是一个二维随机变量,若E{[X-E(X)][Y-E(Y)]}存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{[X-E(X)][Y-E(Y)]},特别有Cov(X,X)=)(XVar。从协方差的定义可以看出,它是X的偏差“X-E(X)”与Y的偏差“Y-E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差[X-E(X)]与[Y-E(Y)]同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
       当Cov(X,Y)<0时,称X与Y负相关,这时X增加而Y减少,或Y增加而X减少,这就是负相关的含义。
       当Cov(X,Y)=0时,称X与Y不相关。也就是说,协方差就是用来描述二维随机变量X与Y相互关联程度的一个特征数。协方差Cov(X,Y)是有量纲的量,譬如X表示人的身高,单位是米(m),Y表示人的体重,单位是公斤(kg),则Cov(X,Y)带有量纲(m·kg)。




首先,我们假定要研究的两个随机变量是X和Y。他们的联合密度函数是f(x,y),X的边缘密度g(x),Y的边缘密度是h(y),他们的期望分别是EX和EY,方差是Var(X)和Var(Y),协方差为Cov(X,Y)=E(XY)-EXEY
      然后,题主问的是随机变量X和Y不相关却不一定独立?
      这里我们默认不相关指的是不线性相关,也就是协方差或者Pearson的线性相关系数为0
即Cov(X,Y)=E(XY)-EXEY=0 或者说 EXY=EXEY。 
      PS:一般来说,概率和统计中不加说明的使用不相关都是指线性相关系数为0。此外,相关系数不为0的情况,各式各样的说法有很多,有的人会说这两个随机变量相关,有的人会说两个随机变量之间有一定的线性关系,显得不严谨,因为xjb乱用的人太多了,总之怎么舒服怎么来,讲清楚就ok。此外楼主说的是随机变量,随机变量的独立要想严格讨论一定要在概率的框架下面,此外随机变量uncorrelated的定义就是协方差为0,请自行wiki。在统计中,独立只出现在假设中,样本本身是不能用来讨论独立性的,度量样本相关性的量很多,除了Pearson的线性相关系数,还有Kendall’s tau,Spearman‘s rho。
      独立就是两个随机变量相互独立,等价于f(x,y)=g(x)h(y),即联合密度函数等于两个边缘密度的乘积。对于离散的随机变量会稍有不同,Pr(X=x,Y=y)=Pr(X=x)Pr(Y=y) for all x and y。
       首先,很明确的告诉题主, 随机变量的 不相关 和 独立 在定义上就是不等价的。
独立是不相关的充分不必要条件,即独立可以推出不相关,反之不行。