连续随机变量及其概率密度——一切推理都必须从观察和实验中来
上一节
下一节

连续型随机变量
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续型随机变量,f(x)称为X的概率密度函数(分布密度函数)。

能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。
比如,一次掷20个硬币,k个硬币正面朝上,k是随机变量,k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,因而k是离散型随机变量。
如果变量可以在某个区
间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。


