概率统计a3

田红娟

目录

  • 1 第一章
    • 1.1 随机试验 样本空间 随机事件——小明的一天
    • 1.2 事件的关系和运算---中国游客不带现金走遍世界
    • 1.3 古典概型——美国总统的生日
    • 1.4 几何概型——天上会掉馅饼么
    • 1.5 概率公理化定义——概率的前世今生
    • 1.6 概率的性质——配对问题
    • 1.7 条件概率——抽签与顺序有关吗?(一)
    • 1.8 乘法公式——抽签与顺序有关吗?(二)
    • 1.9 全概率公式——抽签与顺序有关吗?(三)
    • 1.10 贝叶斯公式——马航客机搜寻
    • 1.11 事件的相互独立性——三个臭皮匠,顶个诸葛亮
  • 2 第二章
    • 2.1 随机变量的概念——现代概率的开端
    • 2.2 两点分布,二项分布——考试全凭瞎猜能及格么
    • 2.3 泊松分布、泊松定理——保险公司能亏本么
    • 2.4 几何分布与超几何分布——科比·布莱恩特的投篮
    • 2.5 一维随机变量的分布函数---随机变量的身份证特征
    • 2.6 连续随机变量及其概率密度——一切推理都必须从观察和实验中来
    • 2.7 均匀分布——几何分布的概率模型
    • 2.8 指数分布——钻石恒久远,一颗永流传
    • 2.9 正态分布——你坐公共汽车被车门碰过头么?
    • 2.10 随机变量函数的分布——一盒粉饼可以用多久?
  • 3 第三章
    • 3.1 二维随机变量的分布函数、二维离散型——中奖概率有多大?
    • 3.2 二维连续型随机变量的联合密度函数和边缘密度函数——汽车车灯视野的设计
    • 3.3 边缘分布函数,边缘分布律——横看成岭侧成峰,远近高低各不同
    • 3.4 离散型随机变量的条件分布律——“学神、学霸”论
    • 3.5 条件分布函数,连续型随机变量的条件概率密度——圆盘上的思考
    • 3.6 两个随机变量的独立性——猜猜他们有办公室恋情吗?
    • 3.7 二维离散型随机变量函数的分布——学府路红绿灯
    • 3.8 二维连续型随机变量函的分布、 和的分布——食堂窗口的个数
    • 3.9 最大与最小值的分布——电路系统的寿命
  • 4 第四章
    • 4.1 期望的概念、离散型随机变量期望的计算——赌金如何分配?
    • 4.2 连续型随机变量期望的计算——如何分辨毒豆芽?
    • 4.3 随机变量函数的期望——中国人的骄傲“乒乓球”
    • 4.4 数学期望的性质——隐藏在七星彩中的秘密
    • 4.5 方差的定义及性质、离散型随机变量方差的计算——哪个方阵更整齐
    • 4.6 连续型随机变量方差的计算——几个常见分布的方差
    • 4.7 协方差及其性质、相关系数的性质 ——你幸福么?
  • 5 第五章
    • 5.1 切比雪夫不等式、协方差矩阵——心形的概率
    • 5.2 伯努利大数定律 ——概率论历史上的第一个极限定理
    • 5.3 切比雪夫大数定律——彩票要不要涨价
    • 5.4 中心极限定理——教室应该设置多少座位?
  • 6 第六章
    • 6.1 总体与样本
    • 6.2 统计量与三大分布
    • 6.3 正态总体分布
    • 6.4 t分布,F分布
  • 7 第七章
    • 7.1 矩估计
    • 7.2 极大似然估计
    • 7.3 评价估计的标准
    • 7.4 区间估计
  • 8 第八章
    • 8.1 假设检验基本思想
    • 8.2 单个正态总体均值
    • 8.3 单个正态总体方差
    • 8.4 两个正态总体参数
贝叶斯公式——马航客机搜寻





      贝叶斯(约1701-1761) Thomas Bayes,英国数学家。约1701年出生于伦敦,做过神甫。1742年成为英国皇家学会会员。1761年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献。他死后,理查德·普莱斯(Richard Price)于1763年将他的著作《机会问题的解法》(An essay towards solving a problem in the doctrine of chances)寄给了英国皇家学会,对于现代概率论和数理统计产生了重要的影响。贝叶斯的另一著作《机会的学说概论》发表于1758年。贝叶斯所采用的许多术语被沿用至今。

  贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
       贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
       贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
       1、已知类条件概率密度参数表达式和先验概率。
       2、利用贝叶斯公式转换成后验概率。
       3、根据后验概率大小进行决策分类。
       他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是1763年被发现后提出来的:
       假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)即是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。

1.知识目标理解贝叶斯公式,并会用贝叶斯公式解决实际问题。

2.能力目标:提高学生自主思考能力,使学生从依赖型学生转变为参与学习者,最终变为自主学习者。通过自己编写习题培养学生的创新思维和创新能力。

3.德育目标:在讨论中逐步养成彼此既关心与欣赏,又能相互合作与竞争的品性特征。

了解贝叶斯公式的背景来源;

了解贝叶斯公式的基本思想;

掌握贝叶斯公式的适用范围、基本步骤及其具体运用。

重点:贝叶斯公式应用--执果溯因

难点:贝叶斯公式应用--对事物的再认识

在线自学内容+教师布置小组讨论内容

(1)应用贝叶斯公式的前提条件是什么?

(2)遇到哪类问题考虑用贝叶斯公式?

(3)用自己的话说明如何应用贝叶斯公式解决马航客机失联事件?

(4)你还能想到哪些现实生活中能用到贝叶斯公式的例子吗?编写出这样的题目,并用贝叶斯公式解决(可以提问其他小组做题)。

贝叶斯公式的适用范围,基本步骤;

全概率公式和贝叶斯公式的区别。