概率统计a3

田红娟

目录

  • 1 第一章
    • 1.1 随机试验 样本空间 随机事件——小明的一天
    • 1.2 事件的关系和运算---中国游客不带现金走遍世界
    • 1.3 古典概型——美国总统的生日
    • 1.4 几何概型——天上会掉馅饼么
    • 1.5 概率公理化定义——概率的前世今生
    • 1.6 概率的性质——配对问题
    • 1.7 条件概率——抽签与顺序有关吗?(一)
    • 1.8 乘法公式——抽签与顺序有关吗?(二)
    • 1.9 全概率公式——抽签与顺序有关吗?(三)
    • 1.10 贝叶斯公式——马航客机搜寻
    • 1.11 事件的相互独立性——三个臭皮匠,顶个诸葛亮
  • 2 第二章
    • 2.1 随机变量的概念——现代概率的开端
    • 2.2 两点分布,二项分布——考试全凭瞎猜能及格么
    • 2.3 泊松分布、泊松定理——保险公司能亏本么
    • 2.4 几何分布与超几何分布——科比·布莱恩特的投篮
    • 2.5 一维随机变量的分布函数---随机变量的身份证特征
    • 2.6 连续随机变量及其概率密度——一切推理都必须从观察和实验中来
    • 2.7 均匀分布——几何分布的概率模型
    • 2.8 指数分布——钻石恒久远,一颗永流传
    • 2.9 正态分布——你坐公共汽车被车门碰过头么?
    • 2.10 随机变量函数的分布——一盒粉饼可以用多久?
  • 3 第三章
    • 3.1 二维随机变量的分布函数、二维离散型——中奖概率有多大?
    • 3.2 二维连续型随机变量的联合密度函数和边缘密度函数——汽车车灯视野的设计
    • 3.3 边缘分布函数,边缘分布律——横看成岭侧成峰,远近高低各不同
    • 3.4 离散型随机变量的条件分布律——“学神、学霸”论
    • 3.5 条件分布函数,连续型随机变量的条件概率密度——圆盘上的思考
    • 3.6 两个随机变量的独立性——猜猜他们有办公室恋情吗?
    • 3.7 二维离散型随机变量函数的分布——学府路红绿灯
    • 3.8 二维连续型随机变量函的分布、 和的分布——食堂窗口的个数
    • 3.9 最大与最小值的分布——电路系统的寿命
  • 4 第四章
    • 4.1 期望的概念、离散型随机变量期望的计算——赌金如何分配?
    • 4.2 连续型随机变量期望的计算——如何分辨毒豆芽?
    • 4.3 随机变量函数的期望——中国人的骄傲“乒乓球”
    • 4.4 数学期望的性质——隐藏在七星彩中的秘密
    • 4.5 方差的定义及性质、离散型随机变量方差的计算——哪个方阵更整齐
    • 4.6 连续型随机变量方差的计算——几个常见分布的方差
    • 4.7 协方差及其性质、相关系数的性质 ——你幸福么?
  • 5 第五章
    • 5.1 切比雪夫不等式、协方差矩阵——心形的概率
    • 5.2 伯努利大数定律 ——概率论历史上的第一个极限定理
    • 5.3 切比雪夫大数定律——彩票要不要涨价
    • 5.4 中心极限定理——教室应该设置多少座位?
  • 6 第六章
    • 6.1 总体与样本
    • 6.2 统计量与三大分布
    • 6.3 正态总体分布
    • 6.4 t分布,F分布
  • 7 第七章
    • 7.1 矩估计
    • 7.2 极大似然估计
    • 7.3 评价估计的标准
    • 7.4 区间估计
  • 8 第八章
    • 8.1 假设检验基本思想
    • 8.2 单个正态总体均值
    • 8.3 单个正态总体方差
    • 8.4 两个正态总体参数
几何概型——天上会掉馅饼么



1-3几何概型

本集(概率空间五)是任务点,必看,下面(概率空间六)选看。

下面这集选看。


       一种概率模型。在这个模型下,随机实验所有可能的结果是无限的,并且每个基本结果发生的概率是相同的。例如一个人到单位的时间可能是8:00~9:00之间的任意一个时刻;往一个方格中投一个石子,石子落在方格中任何一点上……这些试验出现的结果都是无限多个,属于几何概型。一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征——无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。

 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
       比如:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。这里的区域可以是线段,平面图形,立体图形等。用这种方法处理随机试验,称为几何概型。
       几何概型与古典概型相对,将等可能事件的概念从有限向无限的延伸。这个概念在我国初中数学中就开始介绍了。
       古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果是无限个。

       几何概型的特点有下面两个:
       (1)无限性:试验中所有可能出现的基本事件(结果)有无限多个。
       (2)等可能性:每个基本事件出现的可能性相等。


1、正确理解几何概型的概念;

2、掌握几何概型计算概率的基本公式;

3、熟练计算几何概型中事件发生的概率


1、重点掌握几何概型的基本特征试验的结果是无限的,且每个基本事件发生的可能性是相同的

2、如何确定几何图形求相应的概率

3、难点是如何实际问题转化几何概型,确定基本事件,选择适当的几何度量



1、古典概型与几何概型的区别:古典概型中试验结果的个数是有限的,而几何概型中要求试验结果个数为无限;
2、几何概型中基本事件的要满足等可能的判定条件;

3、注意几何概型概型中几何度量的选择。