目录

  • 1 自然语言处理概论
    • 1.1 绪论
    • 1.2 NLP基础实验
  • 2 分词
    • 2.1 分词
    • 2.2 中文自然语言处理
    • 2.3 机器学习复习
  • 3 机器学习与自然语言处理
    • 3.1 机器学习与自然语言处理基础
    • 3.2 分类评估方法
    • 3.3 线性回归
    • 3.4 逻辑回归
    • 3.5 SVM
    • 3.6 管道模型
  • 4 自然语言模型与词向量
    • 4.1 自然语言模型
    • 4.2 词向量
    • 4.3 word2vec实验课
  • 5 卷积神经网络与自然语言处理
    • 5.1 卷积神经网络
    • 5.2 pytorch模型训练流程
  • 6 循环神经网络
    • 6.1 循环神经网络
    • 6.2 NER
  • 7 知识点回顾
    • 7.1 知识点回顾
  • 8 第二次作业讲解
    • 8.1 第二次作业
  • 9 seq2seq与机器翻译
    • 9.1 seq2seq
  • 10 Attention与Transformer
    • 10.1 Attention与Transformer
  • 11 预训练模型
    • 11.1 迁移学习与预训练模型
NLP基础实验


1.2.1 练习Python基础工具包

1.2.1.1 Numpy








1.2.1.2 Pandas

安装Pandas: pip install pandas





1.2.1.3 Matplotlib

安装pip install matplotlib    注意: 必须Python3



1.2.2 NLP基本处理


本文将讨论文本预处理的基本步骤,旨在将文本信息从人类语言转换为机器可读格式以便用于后续处理。此外,本文还将进一步讨论文本预处理过程所需要的工具。

当拿到一个文本后,首先从文本正则化(text normalization) 处理开始。常见的文本正则化步骤包括:

  • 将文本中出现的所有字母转换为小写或大写

  • 将文本中的数字转换为单词或删除这些数字

  • 删除文本中出现的标点符号、重音符号以及其他变音符号

  • 删除文本中的空白区域

  • 扩展文本中出现的缩写

  • 删除文本中出现的终止词、稀疏词和特定词

  • 文本规范化(text canonicalization)


将文本中出现的字母转化为小写


示例1:将字母转化为小写


Python 实现代码:


input_str = ”The 5 biggest countries by population in 2017 are China, India, United States, Indonesia, and Brazil.”
input_str = input_str.lower()
print(input_str)



输出:


the 5 biggest countries by population in 2017 are china, india, united states, indonesia, and brazil.



删除文本中出现的数字


如果文本中的数字与文本分析无关的话,那就删除这些数字。通常,正则化表达式可以帮助你实现这一过程。

示例2:删除数字

Python 实现代码:     


import re
input_str = ’Box A contains 3 red and 5 white balls, while Box B contains 4 red and 2 blue balls.’
result = re.sub(r’\d+’, ‘’, input_str)
print(result)



输出:


Box A contains red and white balls, while Box B contains red and blue balls.



删除文本中出现的标点

以下示例代码演示如何删除文本中的标点符号,如 [!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~] 等符号

示例3:删除标点

Python 实现代码:


import string
input_str = “This &is [an] example? {of} string. with.? punctuation!!!!” # Sample string
result = input_str.translate(string.maketrans(“”,””), string.punctuation)
print(result)


输出:


This is an example of string with punctuation



删除文本中出现的空格

可以通过 strip()函数移除文本前后出现的空格。

示例4:删除空格

Python 实现代码:


input_str = “ \t a string example\t “
input_str = input_str.strip()
input_str


输出:


‘a string example’


删除文本中出现的终止词

终止词(Stop words) 指的是“a”,“a”,“on”,“is”,“all”等语言中最常见的词。这些词语没什么特别或重要意义,通常可以从文本中删除。一般使用 Natural Language Toolkit(NLTK) 来删除这些终止词,这是一套专门用于符号和自然语言处理统计的开源库。

示例7:删除终止词

实现代码:


input_str = “NLTK is a leading platform for building Python programs to work with human language data.”
stop_words = set(stopwords.words(‘english’))
from nltk.tokenize import word_tokenize
tokens = word_tokenize(input_str)
result = [i for i in tokens if not i in stop_words]
print (result)



输出:



[‘NLTK’, ‘leading’, ‘platform’, ‘building’, ‘Python’, ‘programs’, ‘work’, ‘human’, ‘language’, ‘data’, ‘.’]


此外,scikit-learn 也提供了一个用于处理终止词的工具: 


from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS


同样,spaCy 也有一个类似的处理工具:


from spacy.lang.en.stop_words import STOP_WORDS


删除文本中出现的稀疏词和特定词

在某些情况下,有必要删除文本中出现的一些稀疏术语或特定词。考虑到任何单词都可以被认为是一组终止词,因此可以通过终止词删除工具来实现这一目标。

词干提取(Stemming)

词干提取是一个将词语简化为词干、词根或词形的过程如 books-booklooked-look)。当前主流的两种算法是 Porter stemming 算法删除单词中删除常见的形态和拐点结尾)  Lancaster stemming 算法。


示例 8:使用 NLYK 实现词干提取

实现代码:


from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
stemmer= PorterStemmer()
input_str=”There are several types of stemming algorithms.”
input_str=word_tokenize(input_str)
for word in input_str:
    print(stemmer.stem(word))


输出:


There are sever type of stem algorithm.



词形还原(Lemmatization)

词形还原的目的,如词干过程,是将单词的不同形式还原到一个常见的基础形式。与词干提取过程相反,词形还原并不是简单地对单词进行切断或变形,而是通过使用词汇知识库来获得正确的单词形式。

当前常用的词形还原工具库包括: NLTK(WordNet Lemmatizer)spaCyTextBlobPatterngensimStanford CoreNLP,基于内存的浅层解析器(MBSP)Apache OpenNLPApache Lucene,文本工程通用架构(GATE)Illinois Lemmatizer  DKPro Core

示例 9:使用 NLYK 实现词形还原

实现代码:   


from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
lemmatizer=WordNetLemmatizer()
input_str=”been had done languages cities mice”
input_str=word_tokenize(input_str)
for word in input_str:
    print(lemmatizer.lemmatize(word))


输出:


be have do language city mouse


词性标注(POS)

词性标注旨在基于词语的定义和上下文意义,为给定文本中的每个单词如名词、动词、形容词和其他单词) 分配词性。当前有许多包含 POS 标记器的工具,包括 NLTKspaCyTextBlobPatternStanford CoreNLP,基于内存的浅层分析器(MBSP)Apache OpenNLPApache Lucene,文本工程通用架构(GATE)FreeLingIllinois Part of Speech Tagger 和 DKPro Core

示例 10:使用 TextBlob 实现词性标注

实现代码:


input_str=”Parts of speech examples: an article, to write, interesting, easily, andof
from textblob import TextBlob
result = TextBlob(input_str)
print(result.tags)


输出:


[(‘Parts’, u’NNS’), (‘of’, u’IN’), (‘speech’, u’NN’), (‘examples’, u’NNS’), (‘an’, u’DT’), (‘article’, u’NN’), (‘to’, u’TO’), (‘write’, u’VB’), (‘interesting’, u’VBG’), (‘easily’, u’RB’), (‘and’, u’CC’), (‘of’, u’IN’)]


词语分块(浅解析)

词语分块是一种识别句子中的组成部分如名词、动词、形容词等,并将它们链接到具有不连续语法意义的高阶单元如名词组或短语、动词组等) 的自然语言过程。常用的词语分块工具包括:NLTKTreeTagger chunkerApache OpenNLP,文本工程通用架构(GATE)FreeLing

示例 11:使用 NLYK 实现词语分块

第一步需要确定每个单词的词性。

实现代码:


input_str=”A black television and a white stove were bought for the new apartment of John.”
from textblob import TextBlob
result = TextBlob(input_str)
print(result.tags)


输出:


[(‘A’, u’DT’), (‘black’, u’JJ’), (‘television’, u’NN’), (‘and’, u’CC’), (‘a’, u’DT’), (‘white’, u’JJ’), (‘stove’, u’NN’), (‘were’, u’VBD’), (‘bought’, u’VBN’), (‘for’, u’IN’), (‘the’, u’DT’), (‘new’, u’JJ’), (‘apartment’, u’NN’), (‘of’, u’IN’), (‘John’, u’NNP’)]


第二部就是进行词语分块

实现代码:


reg_exp = “NP: {<DT>?<JJ>*<NN>}”
rp = nltk.RegexpParser(reg_exp)
result = rp.parse(result.tags)
print(result)


输出:


(S (NP A/DT black/JJ television/NN) and/CC (NP a/DT white/JJ stove/NN) were/VBD bought/VBN for/IN (NP the/DT new/JJ apartment/NN)
of/IN John/NNP)



命名实体识别(Named Entity Recognition)

命名实体识别(NER) 旨在从文本中找到命名实体,并将它们划分到事先预定义的类别人员、地点、组织、时间等

常见的命名实体识别工具如下表所示,包括:NLTKspaCy,文本工程通用架构(GATE) -- ANNIEApache OpenNLPStanford CoreNLPDKPro核心,MITIEWatson NLPTextRazorFreeLing