目录

  • 1 人因工程学概述
    • 1.1 人因工程学的命名及定义
    • 1.2 人因工程学的起源与发展
    • 1.3 人因工程学的研究内容与应用领域
    • 1.4 人因工程学的研究方法和步骤
    • 1.5 人因工程学的相关学科
  • 2 人的因素
    • 2.1 神经系统与感觉系统
    • 2.2 肌肉、骨骼与供能系统
    • 2.3 呼吸、消化和循环系统
    • 2.4 脑力劳动与神经紧张型作业的生理变化特点
    • 2.5 人的心理因素
  • 3 微气候环境
    • 3.1 微气候要素及相互关系
    • 3.2 人体的热交换与平衡
    • 3.3 微气候对人的影响
    • 3.4 改善微气候环境的措施
  • 4 照明环境
    • 4.1 光的物理性质与度量
    • 4.2 视觉特性
    • 4.3 照明对作业的影响
    • 4.4 工作场所照明
    • 4.5 照明标准
    • 4.6 照明环境的设计、改善和评价
  • 5 色彩环境
    • 5.1 色彩的含义和构成
    • 5.2 色彩混合与色彩表示方法
    • 5.3 色彩对人的影响
    • 5.4 色彩调节与应用
  • 6 噪声及振动环境
    • 6.1 声音及其度量
    • 6.2 噪声及其对人的影响
    • 6.3 噪声测量及其评价标准
    • 6.4 噪声控制
    • 6.5 振动环境
    • 6.6 特殊工作环境
  • 7 空气环境
    • 7.1 空气中的主要污染物及其来源
    • 7.2 几种现代空气污染的来源及其危害
    • 7.3 空气污染物浓度及相关标准
    • 7.4 粉尘
    • 7.5 空气中二氧化碳
    • 7.6 工作场所通风与空气调节
  • 8 体力工作负荷
    • 8.1 人体活动力量与耐力
    • 8.2 体力工作负荷及其测定
    • 8.3 体力工作时的能量消耗
    • 8.4 作业时的氧耗动态
    • 8.5 劳动强度
    • 8.6 体力疲劳及其消除
  • 9 人的信息处理系统
    • 9.1 人的信息处理系统模型
    • 9.2 感知系统的信息加工
    • 9.3 中枢(认知)系统的信息加工
    • 9.4 人的信息输出
  • 10 脑力工作负荷
    • 10.1 脑力负荷定义及影响因素
    • 10.2 脑力负荷的测量方法
    • 10.3 脑力负荷的预测方法
    • 10.4 脑力疲劳及其消除
  • 11 人体测量
    • 11.1 人体测量概述
    • 11.2 常用的人体测量数据
    • 11.3 人体测量数据的应用
  • 12 作业空间设计
    • 12.1 作业空间设计概述
    • 12.2 作业空间设计中的人体因素
    • 12.3 作业姿势与作业空间设计
    • 12.4 工作场所性质与作业空间设计
    • 12.5 座椅设计
  • 13 人机系统
    • 13.1 人机系统概述
    • 13.2 人机系统设计思想与程序
    • 13.3 人机系统评价概述
    • 13.4 人机系统分析评价方法
  • 14 人机界面设计
    • 14.1 人机界面概述
    • 14.2 显示器设计
    • 14.3 控制器设计
    • 14.4 控制—显示组合设计
    • 14.5 可交互式屏幕的界面设计
  • 15 劳动安全与事故预防
    • 15.1 事故及其危害
    • 15.2 人机系统的安全性分析与评价
    • 15.3 事故产生的原因
    • 15.4 事故预测与预防
特殊工作环境

第六节 特殊工作环境

加速度效应

失重效应

高压与低压效应

电磁场环境及其对人体的伤害

加速度效应

由于加速度和惯性力的作用,会使物体重量增加,称为“超重” 

 在加速度作用下,机体内会出现一系列的变化 ,在飞行员、航天员工作中,长时间加速度作用可以很快地导致视觉障碍

失重效应

“失重”,就是指人体身体各部分所受到的外力合力等于零,人处于一种完全飘浮的状态。 

失重时人的操作活动不能像地面有重力时那样进行活动

高压与低压效应

静水压力和水下作业条件   潜水作业

低压和缺氧的环境条件     高空飞行(如航空和航天)及登山作业

电磁场环境及其对人体的伤害

电磁辐射由电磁发射引起的。辐射来源分天然辐射和人工辐射

       辐射损伤症状:

疲乏、恶心、呕吐、食欲减退、头痛、眩晕、失眠白细胞、红细胞和血小板显著减少、腹泻、便血、皮肤和粘膜出血、水肿、毛发脱落、白内障、消化功能紊乱.   

案例:高架道路交通噪音和防噪屏设置

交通噪声一直是城市坏境噪声中的主要来源。

在噪声传播途径中把声音隔绝起来是噪声控制最有效的方法之一,防噪屏是最常见的措施。

高架道路上的防噪屏设计


隔声屏障的作用和应用

隔声屏障能使声能衰减,是利用声波的反射和衍射原理,在板后形成声影区,在声影区中噪声可以得到衰减

在上海、深圳及北京等大城市的高架道路两旁先后建起了不同形式和结构的道路隔声屏。