-
1 Introduction of AI
-
2 Intelligent Angents
-
3 Seach and Tree-search
-
4 Graph-search and Uninformed Search
-
5 Heuristic search algorithms
-
5.1 授课内容
-
5.2 课程PPT
-
5.3 课程视频
-
5.4 课后讨论
-
6 The conditions for optimality
-
6.1 授课内容
-
6.2 课程PPT
-
6.3 课程视频
-
6.4 课后讨论
-
7 Markov Reward Process
-
7.1 授课内容
-
7.2 课程PPT
-
7.3 课程视频
-
7.4 课后讨论
-
8 Markov Decision Process
-
8.1 授课内容
-
8.2 课程PPT
-
8.3 课程视频
-
8.4 课后讨论
-
9 Beyond classical search - Learning from the Nature
-
9.1 授课内容
-
9.2 课程PPT
-
9.3 课程视频
-
9.4 课后讨论
-
10 Quantifying Uncertainty
-
10.1 授课内容
-
10.2 课程PPT
-
10.3 课程视频
-
10.4 课后讨论
-
11 Probability reasoning
-
11.1 授课内容
-
11.2 课程PPT
-
11.3 课程视频
-
11.4 课后讨论
-
12 Bayesian Inference
-
12.1 授课内容
-
12.2 课程PPT
-
12.3 课程视频
-
12.4 课后讨论
-
13 Reinforcement Learning
-
13.1 授课内容
-
13.2 课程PPT
-
13.3 课程视频
-
13.4 课后讨论
-
14 Dynamic Programming
-
14.1 授课内容
-
14.2 课程PPT
-
14.3 课程视频
-
14.4 课后讨论
-
15 Lecture Summary