矿井通风

李雨成

目录

  • 1 视频学习
    • 1.1 概述
  • 2 矿井空气
    • 2.1 矿井通风成分
    • 2.2 矿井通风中的有害气体
    • 2.3 矿井气候
    • 2.4 矿井通风成分
    • 2.5 矿井通风的有害气体
    • 2.6 矿井气候
  • 3 矿井空气流动的基本理论
    • 3.1 空气的主要物理参数
    • 3.2 风流的能量与压力
    • 3.3 矿井通风中的能量方程
    • 3.4 能量方程在矿井通风中的应用
    • 3.5 空气的主要物理参数
    • 3.6 风流的能量与压力
    • 3.7 矿井通风的能量方程
    • 3.8 能量方程在矿井通风中的应用
  • 4 井巷通风阻力
    • 4.1 井巷断面上风速分布
    • 4.2 摩擦风阻与阻力
    • 4.3 局部风阻与阻力
    • 4.4 矿井总风阻与矿井等积孔
    • 4.5 降低矿井通风阻力措施
    • 4.6 井巷断面上风速分布
    • 4.7 摩擦风阻与阻力
    • 4.8 局部风阻与阻力
    • 4.9 矿井总风阻与矿井等积孔
    • 4.10 降低矿井通风阻力措施
  • 5 矿井通风动力
    • 5.1 自然风压
    • 5.2 矿用通风机的类型及构造
    • 5.3 通风机附属装置
    • 5.4 通风机实际特性曲线
    • 5.5 通风机工况点及其经济运行
    • 5.6 通风机的联合运转
    • 5.7 自然风压
    • 5.8 矿井通风机的类型及构造
    • 5.9 通风机附属装置
    • 5.10 通风机实际特性曲线
    • 5.11 通风工况点及其经济运行
    • 5.12 通风机的联合运转
  • 6 矿井通风网络中风量分配与调节
    • 6.1 风量分配基本规律
    • 6.2 简单网络特性
    • 6.3 通风网络动态特性分析
    • 6.4 矿井风量调节
    • 6.5 应用计算机解算复杂通风网络
    • 6.6 风量分配基本规律
    • 6.7 简单网络特性
    • 6.8 通风网络动态特性分析
    • 6.9 矿井风量调节
    • 6.10 应用计算机结算复杂通风网络
  • 7 局部通风
    • 7.1 局部通风方法
    • 7.2 掘进工作面需风量计算
    • 7.3 局部通风装备
    • 7.4 局部通风系统设计
    • 7.5 掘进安全技术装备系列化
    • 7.6 局部通风方法
    • 7.7 掘进工作面需风量计算
    • 7.8 局部通风设备
    • 7.9 局部通风系统设计
    • 7.10 掘进安全技术装备系列化
  • 8 矿井通风系统与通风设计
    • 8.1 矿井通风系统
    • 8.2 采区通风系统
    • 8.3 通风构筑物及漏风
    • 8.4 矿井通风设计
    • 8.5 可控循环通风概论
    • 8.6 矿井通风系统
    • 8.7 采区通风系统
    • 8.8 通风构筑物及漏风
    • 8.9 矿井通风设计
    • 8.10 可控循环通风概论
  • 9 矿井空气调节概论
    • 9.1 井口空气加热
    • 9.2 矿井主要热源及其散热量
    • 9.3 矿井风流热湿计算
    • 9.4 矿井降温的一般技术措施
    • 9.5 矿井空调系统设计简介
    • 9.6 井口空气加热
    • 9.7 矿井主要热源及其散热量
    • 9.8 矿井风流热式计算
    • 9.9 矿井降温的一般技术措施
    • 9.10 矿井空调系统设计简介
通风网络动态特性分析

第三节  通风网络动态特性分析

 一、井巷风阻变化引起风流变化的规律

 1. 变阻分支本身的风量与风压变化规律

 当某分支风阻增大时,该分支的风量减小、风压增大;当风阻减小时,该分支的风量增大、风压降低。

 2. 变阻分支对其它分支风量与风压的影响规律

 1)当某分支风阻增大时,包含该分支的所有通路上的其它分支的风量减小, 风压亦减小;与该分支并联的通路上的 分支的风量增大,风压亦增大;当风阻减小时与此相反。

 2)对于一进一出的子网络,若外部分支调阻引起其流入(流出)风量变化,其内部各分支的风量变化趋势相同。

 3)风网内,某分支风阻变化时,各分支风量、风压的变化幅度,以本分支为最大,邻近分支次之,离该分支越远的分支变化越小。

 4)风网内,不同类型的分支风阻变化引起的风量变化幅度和影响范围是不同的。一般地说,主干巷道变阻引起的风量变化幅度和影响范围大,末支巷道变阻引起的风量变化幅度和影响范围小。

 5)风网内某分支增阻时,增阻分支风量减小值比其并联分支风量增加值大;某分支减阻时,减阻分支风量增加值比其并联分支风量减小值大。

 3.巷道密闭与贯通对风流的影响

 巷道密闭相当于该分支的风阻增大至∞,故本分支风量减少到趋近于0;对其它分支的影响规律与分支增阻相同。

 巷道贯通时要修改网络图,即在网络图中增加贯通后的分支。风流方向取决于巷道两端点间压能差;对其它分支的影响规律与分支减阻相同。

 二、风流稳定性分析

 1、稳定性的基本概念

  稳定性是指当系统受到外界瞬时干扰,系统状态偏离了平衡状态后,系统状态自动回复到该平衡状态的能力。

 按照这种稳定性的概念,除非在主要通风机不稳定运行(工作在轴流式风机风压特性曲线的驼峰区)等特殊情况下,矿井通风系统一般都是稳定的。

 通风管理中所说的风流稳定性,一般是指井巷中风流方向发生变化或风量大小变化超过允许范围的现象;且多指风流方向发生变化的现象。

 2、影响风流稳定性的因素

 (1) 风网结构对风流稳定性的影响

 仅由串、并联组成的风网,其稳定性强;角联风网,其对角分支的风流易出现不稳定。

 (2) 风阻变化对风流稳定性的影响

 在角联风网中,边缘分支的风阻变化可能引起角联分支风流改变。

 在实际生产矿井,大多数采掘工作面都是在角联分支中。应采取安装调节风门的措施,保证风流的稳定性。

  (3) 通风风动力变化对风流稳定性的影响

 矿井风网内主要通风机、辅助通风机数量和性能的变化,不仅会引起风机所在巷道的风量变化,而且会使风网内其他分支风量也发生变化,并影响风网内其他风机的工况点。

 3、具体如下:

 (1) 单主要通风机风网,当主要通风机性能发生变化时,风网内各分支风量按主要通风机风量变化的趋势和比率而变化。

 (2) 多主要通风机风网内,当某主要通风机性能发生变化时,整个风网内各分支风量不按比例变化。

 (3) 多主要通风机风网内,即使风网结构和分支风阻不变,当某主要通风机性能发生变化时,由于风网总风量和各主要通风机风量配置发生了变化,因此,各主要通风机的工作风阻与风网总风阻也有所变化。

 (4) 风网内,某巷道安设辅助通风机后,不仅该巷道本身风流发生变化,其他巷道风流也变化。当某辅助通风机风量增大时,辅助通风机所在巷道风量增加,包含辅助通风机在内的闭合回路中,与辅助通风机风向一致的各巷风量增加,与其风向相反的各巷风量减小。

 当辅助通风机风压过高或风量过大时,可引起其并联分支风量不足、停风、甚至反向。引起并联分支风流反向的条件是辅助通风机风量大于回路的总风量或辅助通风机风压大于回路内其同向分支的风压损失。

  (5) 自然风压引起的风流变化,与辅助通风机相似。