矿井通风

李雨成

目录

  • 1 视频学习
    • 1.1 概述
  • 2 矿井空气
    • 2.1 矿井通风成分
    • 2.2 矿井通风中的有害气体
    • 2.3 矿井气候
    • 2.4 矿井通风成分
    • 2.5 矿井通风的有害气体
    • 2.6 矿井气候
  • 3 矿井空气流动的基本理论
    • 3.1 空气的主要物理参数
    • 3.2 风流的能量与压力
    • 3.3 矿井通风中的能量方程
    • 3.4 能量方程在矿井通风中的应用
    • 3.5 空气的主要物理参数
    • 3.6 风流的能量与压力
    • 3.7 矿井通风的能量方程
    • 3.8 能量方程在矿井通风中的应用
  • 4 井巷通风阻力
    • 4.1 井巷断面上风速分布
    • 4.2 摩擦风阻与阻力
    • 4.3 局部风阻与阻力
    • 4.4 矿井总风阻与矿井等积孔
    • 4.5 降低矿井通风阻力措施
    • 4.6 井巷断面上风速分布
    • 4.7 摩擦风阻与阻力
    • 4.8 局部风阻与阻力
    • 4.9 矿井总风阻与矿井等积孔
    • 4.10 降低矿井通风阻力措施
  • 5 矿井通风动力
    • 5.1 自然风压
    • 5.2 矿用通风机的类型及构造
    • 5.3 通风机附属装置
    • 5.4 通风机实际特性曲线
    • 5.5 通风机工况点及其经济运行
    • 5.6 通风机的联合运转
    • 5.7 自然风压
    • 5.8 矿井通风机的类型及构造
    • 5.9 通风机附属装置
    • 5.10 通风机实际特性曲线
    • 5.11 通风工况点及其经济运行
    • 5.12 通风机的联合运转
  • 6 矿井通风网络中风量分配与调节
    • 6.1 风量分配基本规律
    • 6.2 简单网络特性
    • 6.3 通风网络动态特性分析
    • 6.4 矿井风量调节
    • 6.5 应用计算机解算复杂通风网络
    • 6.6 风量分配基本规律
    • 6.7 简单网络特性
    • 6.8 通风网络动态特性分析
    • 6.9 矿井风量调节
    • 6.10 应用计算机结算复杂通风网络
  • 7 局部通风
    • 7.1 局部通风方法
    • 7.2 掘进工作面需风量计算
    • 7.3 局部通风装备
    • 7.4 局部通风系统设计
    • 7.5 掘进安全技术装备系列化
    • 7.6 局部通风方法
    • 7.7 掘进工作面需风量计算
    • 7.8 局部通风设备
    • 7.9 局部通风系统设计
    • 7.10 掘进安全技术装备系列化
  • 8 矿井通风系统与通风设计
    • 8.1 矿井通风系统
    • 8.2 采区通风系统
    • 8.3 通风构筑物及漏风
    • 8.4 矿井通风设计
    • 8.5 可控循环通风概论
    • 8.6 矿井通风系统
    • 8.7 采区通风系统
    • 8.8 通风构筑物及漏风
    • 8.9 矿井通风设计
    • 8.10 可控循环通风概论
  • 9 矿井空气调节概论
    • 9.1 井口空气加热
    • 9.2 矿井主要热源及其散热量
    • 9.3 矿井风流热湿计算
    • 9.4 矿井降温的一般技术措施
    • 9.5 矿井空调系统设计简介
    • 9.6 井口空气加热
    • 9.7 矿井主要热源及其散热量
    • 9.8 矿井风流热式计算
    • 9.9 矿井降温的一般技术措施
    • 9.10 矿井空调系统设计简介
自然风压

第四章  矿井通风动力


本章重点与难点

1、自然风压的产生、计算、利用与控制

2、轴流式和离心式主要通风机特性

3、主要通风机的联合运转

4、主要通风机的合理工作范围

第一节  自然风

 一、 自然风压及其形成和计算

 1、自然通风

 由自然因素作用而形成的通风叫自然通风。

 冬季:空气柱0-1-2比5-4-3的均温度较低,平均空气密度较大,导致两空气柱作用在2-3水平面上的重力不等。它使空气源源不断地从井口1流入,从井口5流出。

 夏季:相反。

自然风压:作用在最低水平两侧空气柱重力差

 2、自然风压的计算

  根据自然风压定义,上图所示系统的自然风压HN可用下式计算:

 为了简化计算,一般采用测算出0-1-2和5-4-3井巷中空气密度的平均值ρm1和ρm2,用其分别代替上式的ρ1和ρ2,则上式可写为:

  注意: (1)自然风压的计算必须取一闭合系统。

       (2)进风系统和回风系统必须取相同的标高。

       (3)一般选取最低点作为基准面。

  二、 自然风压的影响因素及变化规律

 自然风压影响因素

  =f(ρZ)=f[ρ(T,P,R,φ)Z]

  1、矿井某一回路中两侧空气柱的温差是影响的主要因素。

  2、空气成分和湿度影响空气的密度,因而对自然风压也有一定影响,但影响较小。  

  3、井深。与矿井或回路最高与最低点间的高差Z成正比。

 4、主要通风机工作对自然风压的大小和方向也有一定影响。

 三、自然风压的控制和利用

 1、新设计矿井在选择开拓方案、拟定通风系统时,应充分考虑利用地形和当地气候特点。

 2、根据自然风压的变化规律,应适时调整主通风机的工况点,使其既能满足矿井通风需要,又可节约电能。

 3、在建井时期,要注意因地制宜和因时制宜利用自然风压通风,如在表土施工阶段可利用自然通风;在主副井与风井贯通之后,有时也可利用自然通风;有条件时还可利用钻孔构成回路。

 4、利用自然风压做好非常时期通风。一旦主要通风机因故遭受破坏时,便可利用自然风压进行通风。

 5、在多井口通风的山区,尤其在高瓦斯矿井,要掌握自然风压的变化规律,防止因自然风压作用造成某些巷道无风或反向而发生事故。如图是四川某矿因自然风压使风流反向示意图。

ABB’CEFA系统的自然风压为:     

DBB’CED系统的自然风压为:    

 自然风压与主要通风机作用方向相反。当于在平硐口A和进风立井口D各安装一台抽风机(向外)。

 设AB风流停滞,对回路ABDEFA和ABB’CEFA可分别列出压力平衡方程:

   式中:   — 风机静压,

         Q — DBB’C风路风量,;

         RD、RC — 分别为DB和BB’C分支风阻,

   两式相除:


    此即AB段风流停滞条件式。

    当上式变为


    则AB段风流反向。

  由此可知防止AB风路风流反向的措施有:(1)加大RD;(2)增大HS;(3)在A点安装风机向巷道压风。