矿井通风

李雨成

目录

  • 1 视频学习
    • 1.1 概述
  • 2 矿井空气
    • 2.1 矿井通风成分
    • 2.2 矿井通风中的有害气体
    • 2.3 矿井气候
    • 2.4 矿井通风成分
    • 2.5 矿井通风的有害气体
    • 2.6 矿井气候
  • 3 矿井空气流动的基本理论
    • 3.1 空气的主要物理参数
    • 3.2 风流的能量与压力
    • 3.3 矿井通风中的能量方程
    • 3.4 能量方程在矿井通风中的应用
    • 3.5 空气的主要物理参数
    • 3.6 风流的能量与压力
    • 3.7 矿井通风的能量方程
    • 3.8 能量方程在矿井通风中的应用
  • 4 井巷通风阻力
    • 4.1 井巷断面上风速分布
    • 4.2 摩擦风阻与阻力
    • 4.3 局部风阻与阻力
    • 4.4 矿井总风阻与矿井等积孔
    • 4.5 降低矿井通风阻力措施
    • 4.6 井巷断面上风速分布
    • 4.7 摩擦风阻与阻力
    • 4.8 局部风阻与阻力
    • 4.9 矿井总风阻与矿井等积孔
    • 4.10 降低矿井通风阻力措施
  • 5 矿井通风动力
    • 5.1 自然风压
    • 5.2 矿用通风机的类型及构造
    • 5.3 通风机附属装置
    • 5.4 通风机实际特性曲线
    • 5.5 通风机工况点及其经济运行
    • 5.6 通风机的联合运转
    • 5.7 自然风压
    • 5.8 矿井通风机的类型及构造
    • 5.9 通风机附属装置
    • 5.10 通风机实际特性曲线
    • 5.11 通风工况点及其经济运行
    • 5.12 通风机的联合运转
  • 6 矿井通风网络中风量分配与调节
    • 6.1 风量分配基本规律
    • 6.2 简单网络特性
    • 6.3 通风网络动态特性分析
    • 6.4 矿井风量调节
    • 6.5 应用计算机解算复杂通风网络
    • 6.6 风量分配基本规律
    • 6.7 简单网络特性
    • 6.8 通风网络动态特性分析
    • 6.9 矿井风量调节
    • 6.10 应用计算机结算复杂通风网络
  • 7 局部通风
    • 7.1 局部通风方法
    • 7.2 掘进工作面需风量计算
    • 7.3 局部通风装备
    • 7.4 局部通风系统设计
    • 7.5 掘进安全技术装备系列化
    • 7.6 局部通风方法
    • 7.7 掘进工作面需风量计算
    • 7.8 局部通风设备
    • 7.9 局部通风系统设计
    • 7.10 掘进安全技术装备系列化
  • 8 矿井通风系统与通风设计
    • 8.1 矿井通风系统
    • 8.2 采区通风系统
    • 8.3 通风构筑物及漏风
    • 8.4 矿井通风设计
    • 8.5 可控循环通风概论
    • 8.6 矿井通风系统
    • 8.7 采区通风系统
    • 8.8 通风构筑物及漏风
    • 8.9 矿井通风设计
    • 8.10 可控循环通风概论
  • 9 矿井空气调节概论
    • 9.1 井口空气加热
    • 9.2 矿井主要热源及其散热量
    • 9.3 矿井风流热湿计算
    • 9.4 矿井降温的一般技术措施
    • 9.5 矿井空调系统设计简介
    • 9.6 井口空气加热
    • 9.7 矿井主要热源及其散热量
    • 9.8 矿井风流热式计算
    • 9.9 矿井降温的一般技术措施
    • 9.10 矿井空调系统设计简介
矿井通风中的有害气体

第二节 矿井空气中的有害气体

空气中常见有害气体:CO、NO2、SO2、NH3、H2          

 一、基本性性质                          

 (1)一氧化碳(CO)

   一氧化碳是一种无色、无味、无臭的气体。相对密度为0.97,微溶于水,能与空气均匀地混合。一氧化碳能燃烧,当空气中一氧化碳浓度在13~75%范围内时有爆炸的危险。

  主要危害:血红素是人体血液中携带氧气和排出二氧化碳的细胞。一氧化碳与人体血液中血红素的亲合力比氧大250~300倍。一旦一氧化碳进入人体后,首先就与血液中的血红素相结合,因而减少了血红素与氧结合的机会,使血红素失去输氧的功能,从而造成人体血液“窒息”。0 .08%,40分钟引起头痛眩晕和恶心,0.32%,5~10分钟引起头痛、眩晕,30分钟引起昏迷,死亡。

  主要来源:爆破;矿井火灾;煤炭自燃以及煤尘瓦斯爆炸事故等。

  (2)硫化氢(H2S)硫化氢无色、微甜、有浓烈的臭鸡蛋味,当空气中浓度达到0.0001%即可嗅到,但当浓度较高时,因嗅觉神经中毒麻痹,反而嗅不到。硫化氢相对密度为1.19,易溶于水,在常温、常压下一个体积的水可溶解2.5个体积的硫化氢,所以它可能积存于旧巷的积水中。硫化氢能燃烧,空气中硫化氢浓度为4.3~45.5%时有爆炸危险。

  主要危害:硫化氢剧毒,有强烈的刺激作用;能阻碍生物氧化过程,使人体缺氧。当空气中硫化氢浓度较低时主要以腐蚀刺激作用为主,浓度较高时能引起人体迅速昏迷或死亡。0.005~0.01%,1~2小时后出现眼及呼吸道刺激,0.015~0.02% 。

  主要来源:有机物腐烂;含硫矿物的水解;矿物氧化和燃烧;从老空区和旧巷积水中放出。

  (3)二氧化氮(NO2

   二氧化氮是一种褐红色的气体,有强烈的刺激气味,相对密度为1.59,易溶于水。

  主要危害:二氧化氮溶于水后生成腐蚀性很强的硝酸,对眼睛、呼吸道粘膜和肺部有强烈的刺激及腐蚀作用,二氧化氮中毒有潜伏期,中毒者指头出现黄色斑点。0.01%出现严重中毒。主要来源:井下爆破工作。

  (4)二氧化硫(SO2)

 二氧化硫无色、有强烈的硫磺气味及酸味,空气中浓度达到0.0005%即可嗅到。其相对密度为2.22,易溶于水。

 主要危害:遇水后生成硫酸,对眼睛及呼吸系统粘膜有强烈的刺激作用,可引起喉炎和肺水肿。当浓度达到0.002%时,眼及呼吸器官即感到有强烈的刺激;浓度达0.05%时,短时间内即有致命危险。

 主要来源:含硫矿物的氧化与自燃;在含硫矿物中爆破;以及从含硫矿层中涌出。

 (5)氨气(NH3)

无色、有浓烈臭味的气体,相对密度为0.596,易溶于水,。空气浓度中达30%时有爆炸危险。

主要危害:氨气对皮肤和呼吸道粘膜有刺激作用,可引起喉头水肿。

主要来源:爆破工作,注凝胶、水灭火等;部分岩层中也有氨气涌出    (6)氢气(H2)

无色、无味、无毒,相对密度为0.07。氢气能自燃,其点燃温度比沼气低100~200℃

主要危害:当空气中氢气浓度为4~74%时有爆炸危险。

主要来源:井下蓄电池充电时可放出氢气;有些中等变质的煤层中也有氢气涌出、或煤氧化。

二、矿井空气中有害气体的安全浓度标准

矿井空气中有害气体对井下作业人员的生命安全危害极大,因此,《规程》对常见有害气体的安全标准做了明确的规定,矿井空气中有害气体的最高容许浓度 

有害气体称最高容许浓度/%
一氧化碳  CO 0.0024
氧化氮 (折合成二氧化氮) NO2  NO2  0.00025 
二氧化硫SO2 0.0005
硫化氢H2S 0.00066
NH3 0.004