目录

  • 1 绪论
    • 1.1 生物化学与分子生物学大纲
    • 1.2 生化各章节的重难点
    • 1.3 各个章节思维导图
    • 1.4 课时1
    • 1.5 ppt
  • 2 蛋白质的结构和功能
    • 2.1 蛋白质的分子组成
    • 2.2 蛋白质结构和功能的关系
    • 2.3 泛素-蛋白酶体系统
    • 2.4 第一次课
    • 2.5 第二次课
    • 2.6 第三次课
    • 2.7 PPT
    • 2.8 蛋白质的结构与功能 思维导图
  • 3 核酸的结构和功能
    • 3.1 核酸的化学组成以及一级结构
    • 3.2 DNA的空间结构与功能
    • 3.3 story about DNA
    • 3.4 课时1
    • 3.5 课时2
    • 3.6 课时3
    • 3.7 课时4
    • 3.8 ppt
    • 3.9 核酸的结构和功能 思维导图
  • 4 维生素
    • 4.1 ppt
    • 4.2 课时1
    • 4.3 维生素思维导图
  • 5 酶与酶促反应
    • 5.1 酶的分子结构与功能
    • 5.2 酶的工作原理
    • 5.3 酶促反应动力学
    • 5.4 酶的调节
    • 5.5 酶的分类与命名
    • 5.6 酶在医学中的应用
    • 5.7 第一次课
    • 5.8 第二次课
    • 5.9 第三次课
    • 5.10 本章ppt
    • 5.11 酶 思维导图
  • 6 糖代谢
    • 6.1 糖的摄取与利用
    • 6.2 糖的无氧氧化
    • 6.3 糖的有氧氧化
    • 6.4 磷酸戊糖途径
    • 6.5 糖原的合成与分解
      • 6.5.1 多糖和免疫系统
    • 6.6 糖异生
    • 6.7 葡萄糖的其他代谢途径
    • 6.8 血糖及其调节
    • 6.9 第一课时
    • 6.10 第二课时
    • 6.11 第三课时
    • 6.12 PPT
    • 6.13 糖代谢思维导图
  • 7 脂质代谢
    • 7.1 脂质的构成、功能及分析
      • 7.1.1 脂质的分类
    • 7.2 脂质的消化与吸收
    • 7.3 甘油三脂代谢
    • 7.4 磷脂代谢
    • 7.5 胆固醇代谢
    • 7.6 血浆脂蛋白及其代谢
    • 7.7 脂滴的形成
    • 7.8 第一次课
    • 7.9 第二次课
    • 7.10 第三次课
    • 7.11 第四次课
    • 7.12 第五次课
    • 7.13 PPT
    • 7.14 脂代谢思维导图
  • 8 生物氧化
    • 8.1 线粒体氧化体系与呼吸链
    • 8.2 氧化磷酸化与ATP的生成
    • 8.3 氧化磷酸化的影响因素
    • 8.4 其他氧化与抗氧化体系
    • 8.5 生物氧化思维导图
    • 8.6 第一课时
    • 8.7 第二课时
    • 8.8 第三课时
    • 8.9 第四课
  • 9 蛋白质消化吸收和氨基酸代谢
    • 9.1 蛋白质的营养价值与消化、吸收
    • 9.2 氨基酸的一般代谢
    • 9.3 氨的代谢
    • 9.4 个别氨基酸的代谢
    • 9.5 第一课时
    • 9.6 第二课时
    • 9.7 第三课时
    • 9.8 第四课时
    • 9.9 PPT
    • 9.10 蛋白质消化和氨基酸代谢 思维导图
  • 10 核苷酸代谢
    • 10.1 核苷酸代谢概述
    • 10.2 嘌呤核苷酸的合成与分解代谢
    • 10.3 第一课时
    • 10.4 第二课时
    • 10.5 第三课时
    • 10.6 ppt
    • 10.7 核苷酸代谢 思维导图
  • 11 血液的生物化学
  • 12 肝的生物化学
  • 13 DNA的生物合成
    • 13.1 DNA复制的基本规律
    • 13.2 DNA复制的酶学和拓扑学
    • 13.3 原核生物DNA复制过程
    • 13.4 真核生物DNA复制过程
    • 13.5 逆转录
    • 13.6 第一课时
    • 13.7 第二课时
    • 13.8 第三课时
    • 13.9 第四课时
    • 13.10 ppt
    • 13.11 DNA复制思维导图
    • 13.12 教案
  • 14 RNA的生物合成
    • 14.1 原核生物转录的模板和酶
    • 14.2 原核生物的转录过程
    • 14.3 真核生物RNA的合成
    • 14.4 真核生物前体RNA的加工和降解
      • 14.4.1 PPT
      • 14.4.2 RNA的生物合成 思维导图
    • 14.5 第一课时
    • 14.6 第二课时
    • 14.7 第三课时
    • 14.8 第四课时
  • 15 蛋白质的生物合成
    • 15.1 蛋白质合成体系
      • 15.1.1 蛋白质合成ppt
    • 15.2 氨基酸与tRNA的连接
    • 15.3 肽链的合成过程
    • 15.4 蛋白质合成后的加工和靶向输送
    • 15.5 分子伴侣
      • 15.5.1 G-Proteins as Molecular Switches
      • 15.5.2 蛋白质生物合成 思维导图
      • 15.5.3 第一课时
      • 15.5.4 第二课时
      • 15.5.5 第三课时
      • 15.5.6 第四课
  • 16 基因表达调控
    • 16.1 基因表达调控的基本概念与特点
    • 16.2 原核基因表达调控
    • 16.3 真核基因表达调控
    • 16.4 课时视频1
    • 16.5 课时视频2
    • 16.6 课时视频3
    • 16.7 课时视频4
    • 16.8 课时视频5
    • 16.9 PPT
  • 17 癌基因和抑癌基因
    • 17.1 癌基因
    • 17.2 第一课时
    • 17.3 第二课时
    • 17.4 抑癌基因ppt
  • 18 DNA的重组与重组DNA技术
    • 18.1 自然界的DNA重组和基因转移
      • 18.1.1 病毒的结构
    • 18.2 重组DNA技术
    • 18.3 重组DNA技术在医学中的应用
      • 18.3.1 Engineering bacteria with CRISPR
      • 18.3.2 第一课时
      • 18.3.3 第二课时
      • 18.3.4 第三课时
    • 18.4 ppt
  • 19 常用分子生物化学技术的原理及其应用ppt
    • 19.1 分子杂交和印迹杂交
    • 19.2 PCR技术的原理与应用
    • 19.3 DNA测序技术
    • 19.4 生物芯片技术
    • 19.5 蛋白质的分离、纯化与结构分析
      • 19.5.1 质谱及其在分子生物学中的应用
    • 19.6 生物大分子相互作用研究技术
    • 19.7 课时1
    • 19.8 课时2
    • 19.9 课时3
    • 19.10 ppt
  • 20 基因诊断和基因治疗
    • 20.1 基因诊断
      • 20.1.1 小胶质细胞在健康和疾病中的作用
      • 20.1.2 课时1
      • 20.1.3 课时2
    • 20.2 ppt
    • 20.3 基因治疗
  • 21 生物学常用的软件学习
    • 21.1 ImgageJ
    • 21.2 Meta data in bioimaging
      • 21.2.1 Bioimage Analysis
  • 22 血液的生物化学
    • 22.1 课件
  • 23 教材
    • 23.1 生物化学与分子生物学
  • 24 实验
    • 24.1 生化基本实验技术
    • 24.2 基因组DNA提取及PCR
    • 24.3 新建课程目录
    • 24.4 琼脂糖电泳
    • 24.5 酵母RNA的提取及组分鉴定
    • 24.6 血清蛋白质醋酸纤维素薄膜电泳
    • 24.7 葡萄糖氧化酶法测血糖
    • 24.8 酶的竞争性抑制
    • 24.9 胆固醇氧化酶法测定血清总胆固醇
    • 24.10 氨基酸薄层层析
    • 24.11 实验考试
蛋白质结构和功能的关系

AI system solves 50-year-old protein folding problem in hours

An artificial intelligence company that gained fame for designing computer systems that could beat humans at games has now made a huge advancement in biological science.

The company, DeepMind, which is owned by the same parent company as Google, has created an AI system that can rapidly and accurately predict how proteins fold to get their 3D shapes, a surprisingly complex problem that has plagued researchers for decades, according to The New York Times.



Figuring out a protein's structure can require years or even decades of laborious experimentation, and current computer simulations of protein folding fall short on accuracy. But DeepMind's system, known as AlphaFold, required only a few hours to accurately predict a protein's structure, the Times reported.

Proteins are large molecules that are essential for life. They are made up of a string of chemical compounds known as amino acids. These "strings" fold in intricate ways to create unique structures that determine what the protein can do. (For example, the "spike" protein on the new coronavirus allows the virus to bind to and invade human cells.)

Nearly 50 years ago, scientists hypothesized that you could predict a protein's structure knowing just its sequence of amino acids. But solving this "protein folding problem" has proved enormously challenging because there are a mind-boggling number of ways in which the same protein could theoretically fold to take on a 3D structure, according to a statement from DeepMind.

Twenty-five years ago, scientists created an international competition to compare various methods of predicting protein structure — something of a "protein olympics," known as CASP, which stands for Critical Assessment of Protein Structure Prediction, according to The Guardian.

In this year's challenge, AlphaFold's performance was head and shoulders above its competitors'. It achieved a level of accuracy that researchers were not expecting to see for years. 

"This computational work represents a stunning advance on the protein-folding problem, a 50-year-old grand challenge in biology," Venki Ramakrishnan, president of the Royal Society in the United Kingdom, who was not involved with the work, said in a statement. "It has occurred decades before many people in the field would have predicted. It will be exciting to see the many ways in which it will fundamentally change biological research."

For the competition, teams are given the amino acid sequences of about 100 proteins, the structures of which are known but have not been published, according to Nature News. The predictions are given a score from zero to 100, with 90 considered on par with the accuracy of experimental methods.

AlphaFold trained itself to recognize the relationship between the amino acid sequence and protein structure using existing databases. Then, it used a neural network —  a computer algorithm modeled on the way the human brain processes information — to iteratively improve its prediction of the unpublished protein structures.

Overall, AlphaFold had a median score of 92.5. That's up from a score of less than 60 that the system achieved in its first CASP competition in 2018.

The system isn't perfect — in particular, AlphaFold did not perform well in modeling groups of proteins that interact with each other, Nature News reported.

But the advance is a game-changer.

"I think it's fair to say this will be very disruptive to the protein-structure-prediction field. I suspect many will leave the field as the core problem has arguably been solved," Mohammed AlQuraishi, a computational biologist at Columbia University told Nature News. "It's a breakthrough of the first order, certainly one of the most significant scientific results of my lifetime."

DeepMind previously made headlines when it created an AI program, known as AlphaGo, that beat humans at the ancient game of Go.

Researchers hope AlphaFold can have many real-world applications. For example, it could help identify the structures of proteins involved in certain diseases and accelerate drug development.

DeepMind is currently working on a peer-reviewed paper on its work on AlphaFold, the Times reported.