目录

  • 1 Week - 01
    • 1.1 01 - Introduction
    • 1.2 02 - Earth’s gravity field
    • 1.3 03 - Earth's shape
    • 1.4 04 - Earth's rotation
  • 2 Week - 02
    • 2.1 05 - ICRF
    • 2.2 06 - ITRF
    • 2.3 07 - Coordinate Systems in Geodesy
    • 2.4 08 - Spherical harmonic functions
  • 3 Week - 03
    • 3.1 09 - Atmospheric refraction
    • 3.2 10 - Earth tides
    • 3.3 11 - Structure and dynamics of the Earth
    • 3.4 12 - The Earth system
  • 4 Week - 04
    • 4.1 13 - Satellite gravimetry
    • 4.2 14 - Satellite altimetry
    • 4.3 15 - GNSS
    • 4.4 16 - InSAR
  • 5 Week - 05
    • 5.1 17 - Hydrology with satellite gravimetryy
    • 5.2 18 - Hydrology with satellite altimetry
    • 5.3 19 - Hydrology with GNSS
    • 5.4 20 - Hydrology with InSAR
  • 6 Week - 06
    • 6.1 21 - Gravity and hydrology
    • 6.2 22 - Processing satellite gravimetry data (Part I)
    • 6.3 23  - Processing satellite gravimetry data (Part II)
  • 7 Week - 07
    • 7.1 Spherical Harmonics Synthesis and its Use in Solid Earth
    • 7.2 Spherical Harmonics Synthesis and its Use in Hydrology
  • 8 Week - 08
    • 8.1 Finals
    • 8.2 Seminar
Spherical Harmonics Synthesis and its Use in Solid Earth


Practical – 01: Spherical Harmonics Synthesis and its Use in Solid Earth

 The level-2 GOCE products are generally given as gravitational potential in terms of spherical harmonic coefficients (see Lecture 03). In this practical, gravitational functional (e.g., geoid heights) should be computed from these products as gridded data on the Earth's surface.

After you compute the results for geoid heights and gravity anomalies, you need to plot them and discuss the main differences and characteristics between both fields.

In case of extra time, you can try to compute the geoidal height and height anomaly at the scatter locations.

The overall procedure and equations are provided in the file below (Practical-01.pdf). The MATLAB/OCTAVE scripts and functions will be available to download during Week 6.