目录

  • 1 Computer Architecture Course Overview
    • 1.1 Basic Information
    • 1.2 Computer Architecture  Overview
    • 1.3 Learning Resource
  • 2 Basic Concepts of Computer Architecture
    • 2.1 Preview Contents
    • 2.2 计算机系统设计的内容
    • 2.3 定量分析技术
      • 2.3.1 加快经常性事件
      • 2.3.2 Amdahl定律
      • 2.3.3 CPU性能公式
      • 2.3.4 程序局部性原理
    • 2.4 计算机系统的性能评价
    • 2.5 对冯·诺依曼结构的改进
    • 2.6 提高并行性的技术途径
    • 2.7 Test
  • 3 Instruction system architecture
    • 3.1 Preview Contents
    • 3.2 Instruction system structure classification
    • 3.3 Addressing mode
    • 3.4 Functional design of instruction system
    • 3.5 Operand type and size
    • 3.6 Design of instruction format
    • 3.7 MIPS instruction set structure
    • 3.8 Test
  • 4 Pipeline Technology
    • 4.1 Preview Contents
    • 4.2 Basic concepts of pipeline
    • 4.3 Pipeline classification
    • 4.4 Pipeline performance index(1)
    • 4.5 Pipeline performance index(2)
    • 4.6 Nonlinear pipeline scheduling
    • 4.7 Pipeline hazards
    • 4.8 Test(1)
    • 4.9 Pipeline collision(1)
    • 4.10 Pipeline collision(2)
    • 4.11 Pipeline implementation(1,2)
    • 4.12 Test(2)
  • 5 Vector processors
    • 5.1 向量处理方式
    • 5.2 向量处理机的结构
    • 5.3 提高向量处理机性能的主要技术
    • 5.4 向量处理机性能评价
    • 5.5 向量处理机实例
    • 5.6 Test
  • 6 指令级并行(ILP)及开发-硬件方法
    • 6.1 指令级并行的概念
    • 6.2 指令的动态调度
    • 6.3 动态分支预测技术
    • 6.4 多指令流出技术
    • 6.5 Test
  • 7 Storage system
    • 7.1 Preview Contents
    • 7.2 Storage system hierarchy
    • 7.3 Cache基本知识(1)
    • 7.4 Cache基本知识(2)
    • 7.5 Cache基本知识(3)
    • 7.6 Cache性能分析
    • 7.7 Test(1)
    • 7.8 降低Cache不命中率(1)
    • 7.9 降低Cache不命中率(2)
    • 7.10 减少Cache不命中开销
    • 7.11 Test(2)
    • 7.12 减少命中时间
    • 7.13 并行主存系统
    • 7.14 虚拟存储器
    • 7.15 Test(3)
  • 8 Input/output system
    • 8.1 Preview Contents
    • 8.2 Basic concepts of I / O system
    • 8.3 RAID
    • 8.4 Bus
    • 8.5 Test(1)
    • 8.6 Channel processor
    • 8.7 I/O and OS
    • 8.8 Test(2)
  • 9 互连网络
    • 9.1 Preview Contents
    • 9.2 互连网络的基本概念
    • 9.3 互连网络的结构参数与性能指标
    • 9.4 互连函数
    • 9.5 Test(1)
    • 9.6 静态互连网络
    • 9.7 动态互连网络
    • 9.8 消息传递机制
    • 9.9 Test(2)
  • 10 多处理机
    • 10.1 Preview Contents
    • 10.2 多处理机概念
    • 10.3 对称式共享存储器
    • 10.4 分布式共享存储器
    • 10.5 Test(1)
    • 10.6 同步
    • 10.7 同时多线程
    • 10.8 大规模并行处理机
    • 10.9 多处理机实例
    • 10.10 Test(2)
  • 11 Parallel Processing with Multi-core
    • 11.1 PRAM and Parallel Computing
    • 11.2 Test
    • 11.3 Part I: Introduction to Parallel Processing with Multi-core
    • 11.4 Part II: Introduction to Parallel Processing with Multi-core
    • 11.5 Part III: Introduction to Parallel Processing with Multi-core
    • 11.6 Part IV: Introduction to Parallel Processing with Multi-core
    • 11.7 Part V: Sorting
    • 11.8 Exercises
    • 11.9 Lab
    • 11.10 Quizzes
  • 12 计算机系统结构未来发展趋势
    • 12.1 计算机系统结构挑战及趋势
    • 12.2 后摩尔时代处理器芯片体系结构的变化
    • 12.3 计算机系统结构趋势-存储
    • 12.4 计算机系统结构课程总结
    • 12.5 部分习题
    • 12.6 Test
  • 13 课程实验
    • 13.1 实验平台说明
    • 13.2 实验一:MIPS指令系统和MIPS体系结构
    • 13.3 实验二:流水线及流水线中的冲突
    • 13.4 实验三:指令调度和延迟分支
    • 13.5 实验四:Cache性能分析
    • 13.6 实验五:Tomasulo算法
    • 13.7 实验六:再定序缓冲(ROB)工作原理
    • 13.8 实验七:多Cache一致性——监听协议
    • 13.9 实验八:多Cache一致性——目录协议
实验二:流水线及流水线中的冲突

A.2 实验二流水线及流水线中的冲突

A.2.1 实验目的

1.        加深对计算机流水线基本概念的理解。

2.        理解MIPS结构如何用5段流水线来实现,理解各段的功能和基本操作。

3.        加深对数据冲突、结构冲突的理解,理解这两类冲突对CPU性能的影响。

4.        进一步理解解决数据冲突的方法,掌握如何应用定向技术来减少数据冲突引起的停顿。

A.2.2实验平台

实验平台采用指令级和流水线操作级模拟器MIPSsim

环境的建立:见A.0

A.2.3 实验内容和步骤

首先要掌握MIPSsim模拟器的使用方法。详见附录B

1. 启动MIPSsim

2.根据预备知识中关于流水线各段操作的描述,进一步理解流水线窗口中各段的功能,掌握各流水寄存器的含义。(用鼠标双击各段,就可以看到各流水寄存器的内容)

3. 熟悉MIPSsim模拟器的操作和使用方法。

可以先载入一个样例程序(在本模拟器所在的文件夹下的“样例程序”文件夹中),然后分别以单步执行一个周期、执行多个周期、连续执行、设置断点等的方式运行程序,观察程序的执行情况,观察CPU中寄存器和存储器的内容的变化,特别是流水寄存器内容的变化。

4. 选择配置菜单中的“流水方式”,使模拟器工作于流水方式下。

5.观察程序在流水线中的执行情况,步骤如下:

(1)         选择MIPSsim的“文件”→“载入程序”选项来加载pipeline.s(在模拟器所在文件夹下的“样例程序”文件夹中)。

(2)         关闭定向功能。这是通过在“配置”→“定向”(使该项前面没有“√”号)来实现的。

(3)         用单步执行一周期的方式(“执行”菜单中)或用F7执行该程序,观察每一周期中,各段流水寄存器内容的变化、指令的执行情况(“代码”窗口)以及时钟周期图。

(4)         当执行到第13个时钟周期时,各段分别正在处理的指令是:

IF                            

ID                             

EX                            

MEM                         

WB                          

画出这时的时钟周期图。

6. 这时各流水寄存器中的内容为:

IF/ID.IR                          

IF/ID.NPC                          

ID/EX.A                           

ID/EX.B                          

ID/EX.Imm                        

ID/EX.IR                          

EX/MEM.ALUo                    

EX/MEM.IR                       

MEM/WB.LMD                    

MEM/WB.ALUo                   

MEM/WB.IR                      

7. 观察和分析结构冲突对CPU性能的影响,步骤如下:

1)加载structure_hz.s(在模拟器所在文件夹下的“样例程序”文件夹中)。

2)执行该程序,找出存在结构冲突的指令对以及导致结构冲突的部件。

(3) 记录由结构冲突引起的停顿时钟周期数,计算停顿时钟周期数占总执行周期数的百分比;

4)把浮点加法器的个数改为4个。

5)再次重复上述(1)~(3)的工作。

6)分析结构冲突对CPU性能的影响,讨论解决结构冲突的方法。

8. 观察数据冲突并用定向技术来减少停顿,步骤如下:

1)全部复位。

2)加载data_hz.s(在模拟器所在文件夹下的“样例程序”文件夹中)。

3)关闭定向功能。这是通过在“配置”→“定向”(使该项前面没有“√”号)来实现的。

4)用单步执行一个周期的方式(F7)执行该程序,同时查看时钟周期图,列出在什么时刻发生了RAW(先写后读)冲突。

5)记录数据冲突引起的停顿时钟周期数以及程序执行的总时钟周期数,计算停顿时钟周期数占总执行周期数的百分比。

6)复位CPU

7)打开定向功能。这是通过在“配置”→“定向”(使该项前面有一个“√”号)来实现的。

8)用单步执行一周期的方式(F7)执行该程序,同时查看时钟周期图,列出在什么时刻发生了RAW(先写后读)冲突,并与(3)的结果进行比较;

9)记录数据冲突引起的停顿时钟周期数以及程序执行的总时钟周期数。计算采用定向技术后性能提高的倍数。