太阳系中的有趣科学

周煦之 田晖

目录

  • 1 引言
    • 1.1 太阳系天体概览
    • 1.2 行星的运动
    • 1.3 日心说的提出
    • 1.4 太阳系各大行星运行规律
  • 2 行星轨道与万有引力
    • 2.1 谷神星的故事
    • 2.2 海王星的故事
    • 2.3 冥王星的故事
    • 2.4 三体问题
    • 2.5 混沌系统
    • 2.6 拉格朗日点
  • 3 万有引力的梯度:潮汐
    • 3.1 潮汐力与洛希极限
    • 3.2 潮汐锁定
    • 3.3 逆行的海卫一(Triton)
    • 3.4 火星的卫星们(Phobos & Deimos)
    • 3.5 木星系与潮汐
  • 4 逐梦火星
    • 4.1 火星的早起观测
    • 4.2 火星的温度和大气成分(一)
    • 4.3 火星的温度和大气成分(二)
    • 4.4 第一次成功飞越火星
    • 4.5 第一次成功环绕火星(一)
    • 4.6 第一次成功环绕火星(二)
    • 4.7 登陆火星
    • 4.8 火星上的“蓝莓”
    • 4.9 火星上的水
    • 4.10 寻找火星表面的液态水
  • 5 温室效应与冰室效应
    • 5.1 火星大气逃逸(一)
    • 5.2 火星大气逃逸(二)
    • 5.3 金星大气的演化
    • 5.4 土卫六勘测
    • 5.5 火星地球化(一)
    • 5.6 火星地球化(二)
    • 5.7 金星地球化
  • 6 外太阳系
    • 6.1 向外太阳系进发
    • 6.2 日球层
    • 6.3 木星系
    • 6.4 土星系(一)
    • 6.5 土星系(二)
    • 6.6 天王星系与海王星系
  • 7 行星磁层与辐射带
    • 7.1 木星的发现与认识
    • 7.2 土星与天王星
    • 7.3 电离辐射
    • 7.4 宇宙射线
    • 7.5 范艾伦辐射带
    • 7.6 木星辐射带
    • 7.7 天王星季节
    • 7.8 各天体的物质构成
    • 7.9 木星的成分
    • 7.10 潮汐加速与潮汐减速
    • 7.11 火星探测
    • 7.12 木星的结构
    • 7.13 木星的温度
    • 7.14 状态方程与相图
    • 7.15 木星的内部结构
  • 8 太阳系小天体
    • 8.1 核心吸积理论(一)
    • 8.2 核心吸积理论(二)
    • 8.3 木星的形成
    • 8.4 系外行星探测(一)
    • 8.5 系外行星探测(二)
    • 8.6 系外行星探测(三)
    • 8.7 小行星带天体与柯依伯带
    • 8.8 彗星
    • 8.9 小行星的形成
    • 8.10 小行星的分布
    • 8.11 陨铁
    • 8.12 石铁陨石
    • 8.13 彗星的起源
    • 8.14 妊神星的故事
    • 8.15 塞德娜的故事
  • 9 探索太阳
    • 9.1 研究太阳的意义
    • 9.2 太阳的结构
    • 9.3 太阳爆发
    • 9.4 太阳活动周
    • 9.5 太阳探测
  • 10 寻找地外生命
    • 10.1 外星生命
    • 10.2 宜居星球
    • 10.3 生命起源
    • 10.4 外星文明
    • 10.5 费米悖论
  • 11 阅读
    • 11.1 阅读
  • 12 问卷调查
    • 12.1 问卷调查
电离辐射
  • 1 视频
  • 2 章节测验


辐射是不以人的意志为转移的客观事物。在我们赖以生存的环境中,辐射无处不在。

按照辐射作用于物质时所产生的效应不同,人们将辐射分为电离辐射与非电离辐射两类。电离辐射包括宇宙射线、X射线和来自放射性物质的辐射。非电离辐射包括紫外线、热辐射、无线电波和微波。

电离辐射是指携带足以使物质原子或分子中的电子成为自由态,从而使这些原子或分子发生电离现象的能量的辐射。

电离辐射是能使受作用物质发生电离现象的辐射,即波长小于100nm的电磁辐射。

电离辐射的特点是波长短、频率高、能量高。电离辐射可以从原子、分子或其他束缚状态中放出(ionize)一个或几个电子。电离辐射是一切能引起物质电离的辐射的总称,其种类很多,高速带电粒子有α粒子、β粒子、质子,不带电粒子有中子以及X射线、γ射线。

2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,电离辐射(所有类型)在一类致癌物清单中。

1895年,他设计了一套设备,使水蒸气冷凝来形成云雾。当时人们认为,要使水蒸气凝结,每颗雾珠必须有一个尘埃为核心。威尔逊仔细除去仪器中的尘埃后发现,无需尘埃,而用X射线照射云室时,云雾立即出现,这证明凝聚现象是以离子为中心出现的。经过四年研究,他总结出,当无尘空气的体积膨胀比为1.25时,负离子开始成为凝聚核心;当膨胀比为1.28时,负离子全部成为凝聚核心。对于正离子来说,膨胀比为1.31时开始成为凝聚核心,膨胀比为1.35时全部成为凝聚核心。另一方面,他还指出,离子的电荷对水蒸气分子产生作用力,有助于雾珠的扩大。1912年,威尔逊为云室增设了拍摄带电粒子径迹的照相设备,使它成为研究射线的重要仪器。用这个云室拍摄了α粒子的图象。

旧称“微粒辐射”。太阳或某些恒星经常发射各种能量的粒子。太阳粒子辐射主要从太阳活动区(尤其是耀斑和日冕物质抛射)喷射出来,包含有电子、质子和各种离子等粒子。当它们来到地球附近时,地磁场受到扰动,电离层亦发生显著变化。带电粒子流的轨道则由于受到地磁场的影响而发生弯曲,轰击两极区域高空的大气粒子,产生极光。由于恒星十分遥远,一般不能直接观测到来自个别恒星的粒子辐射。通过对宇宙线等宇宙高能粒子的观测可以间接研究恒星粒子辐射的特性。