目录

  • 1 爱因斯坦与物理学的革命
    • 1.1 物理学的起源
    • 1.2 “物理”一词在中国
    • 1.3 物理学的诞生
    • 1.4 “1642年”在物理学上的意义
    • 1.5 热学的发展
    • 1.6 明朗天空的两朵乌云
    • 1.7 并非神童的爱因斯坦
    • 1.8 求职不顺的爱因斯坦
    • 1.9 爱因斯坦的丰收年
  • 2 相对论从乌云中降生
    • 2.1 相对论的建立(Ⅰ)
    • 2.2 相对论的建立(Ⅱ)
    • 2.3 相对论的建立(Ⅲ)
    • 2.4 狭义相对论(Ⅰ)
    • 2.5 狭义相对论(Ⅱ)
    • 2.6 双生子佯谬
    • 2.7 爱因斯坦的创新之处
    • 2.8 爱因斯坦的关键贡献
  • 3 激动人心的量子之谜
    • 3.1 元素周期律的发现
    • 3.2 放射性的发现
    • 3.3 探索原子模型
    • 3.4 人才培养的成功方式
    • 3.5 矩阵力学与波动力学
    • 3.6 奇妙的波粒二象性
    • 3.7 关于薛定谔
    • 3.8 关于爱因斯坦
    • 3.9 相对论性量子理论
  • 4 比一千个太阳还亮
    • 4.1 中子的发现
    • 4.2 裂变的发现
    • 4.3 链式反应的发现
    • 4.4 原子弹与氢弹的研制背景
    • 4.5 伟大的奥本海默与玩“龙尾巴”的斯洛廷
    • 4.6 爱开玩笑的费曼
    • 4.7 原子弹的研制
    • 4.8 氢弹的研制及聚变原理
    • 4.9 中国决心制造原子弹
    • 4.10 中国原子弹研制的趣事
    • 4.11 原子能的和平利用
    • 4.12 杨振宁对科学的贡献
  • 5 点燃科学的朝霞
    • 5.1 中心火——毕达哥拉斯的宇宙
    • 5.2 地心火
    • 5.3 哥白尼与“地心说”
    • 5.4 伽利略与土星的光环
    • 5.5 开普勒——行星运动三定律
    • 5.6 牛顿与万有引力
    • 5.7 牛顿的生平
    • 5.8 走下神坛的牛顿
  • 6 弯曲的时空——广义相对论
    • 6.1 狭义相对论的困难
    • 6.2 马赫原理
    • 6.3 等效原理
    • 6.4 爱因斯坦对新理论的构想
    • 6.5 黎曼几何
    • 6.6 广义相对论的建立
    • 6.7 广义相对论的三个实验验证
    • 6.8 相对论的进展
    • 6.9 探索引力波
    • 6.10 展望
    • 6.11 爱因斯坦的学术成就与影响
  • 7 从白矮星、中子星到黑洞
    • 7.1 历史上的黑洞
    • 7.2 恒星的演化
    • 7.3 西北望 射天狼
    • 7.4 白矮星与红巨星
    • 7.5 中子星与脉冲星
    • 7.6 超新星爆发
    • 7.7 球对称黑洞
    • 7.8 转动和带电的黑洞
  • 8 霍金与黑洞
    • 8.1 黑洞的“激发态”
    • 8.2 霍金的学业生涯
    • 8.3 初露锋芒的天才
    • 8.4 奇性定理与面积定理
    • 8.5 霍金辐射
    • 8.6 真空热效应与边界效应
    • 8.7 霍金的主要成就和中国之行
    • 8.8 黑洞与时空性质的研究
    • 8.9 信息疑难与霍金打赌
  • 9 星空与太阳系
    • 9.1 太阳与月球
    • 9.2 八颗行星及其卫星
    • 9.3 小行星
    • 9.4 彗星
    • 9.5 什么是流星雨?
    • 9.6 星空巡礼
    • 9.7 星系与星系团
  • 10 膨胀的宇宙,虫洞和时间机器
    • 10.1 什么是宇宙学原理?
    • 10.2 爱因斯坦有限无边的宇宙模型
    • 10.3 膨胀的宇宙
    • 10.4 暗物质与暗能量
    • 10.5 关于“大爆炸”的错误观念
    • 10.6 虫洞——时空隧道
    • 10.7 时空涨落与时空泡沫
    • 10.8 时间机器
  • 11 对时间的认识和探索
    • 11.1 古希腊与中国古代的时间观
    • 11.2 两种科学时空观的争论
    • 11.3 时间的性质
    • 11.4 对奇性定理的质疑与第三定律
    • 11.5 自由光线的加速度
    • 11.6 时间的度量
    • 11.7 热力学第零定律
  • 12 文明的起源--探索人类的童年
    • 12.1 宇宙何时创生
    • 12.2 宇宙的编年史
    • 12.3 崇拜与图腾、文明与野蛮
    • 12.4 海洋文明与大河文明(Ⅰ)
    • 12.5 海洋文明与大河文明(Ⅱ)
    • 12.6 埃及考古与希腊考古
    • 12.7 三版《尚书》之辩
    • 12.8 司马迁与《史记》
    • 12.9 班固兄妹与《汉书》
    • 12.10 陈寿与《三国志》
    • 12.11 司马光与《资治通鉴》
    • 12.12 商代考古
  • 13 东西方文明的演进和比较
    • 13.1 思想大解放的时代:百家争鸣
    • 13.2 列强争霸与韬光养晦
    • 13.3 灿烂的古希腊文明
    • 13.4 大统一的西方:马其顿与亚历山大科学院
    • 13.5 大统一的西方:布匿战争与罗马的崛起
    • 13.6 大统一的东方:领先世界的秦汉
    • 13.7 大统一的东方:帝国的兴衰
    • 13.8 冲击东西方的游牧民族
    • 13.9 处于世界巅峰的隋唐
    • 13.10 宋:繁荣和创造的黄金时代
    • 13.11 资本主义前夜的曙光
    • 13.12 革命与变革:危机与机遇并存
  • 14 阅读
    • 14.1 阅读
  • 15 直播
    • 15.1 第一次直播
    • 15.2 第二次直播
信息疑难与霍金打赌
  • 1 视频
  • 2 章节测验




黑洞无毛定理是黑洞简单性的叙述。即当物体坍缩成黑洞后,只留下质量、角动量和电荷三种不能转变成电磁辐射的守衡物理量,它们唯一地确定了黑洞的性质。其它信息(“毛发”)全部消失了。

黑洞无毛定理对于物理学家来说,一个黑洞或一块方糖都是极为复杂的物体,因为对它们的完整描述,即包括它们的原子和原子核结构在内的描述,需要有亿万个参量。与此相比,一个研究黑洞外部的物理学家就没有这样的问题。黑洞是一种极其简单的物体,如果知道了它的质量、角动量和电荷,也就知道了有关它的一切。

黑洞几乎不保持形成它的物质所具有的任何复杂性质。它对前身物质的形状或成分都没有记忆,它保持的只是质量、角动量、电荷。消繁归简或许是黑洞最基本的特征。有关黑洞的大多数术语的发明家约克·惠勒,在60年前把这种特征称为“黑洞无毛定理”。一开始,这只是一种猜测,在20世纪70年代得到了严格的数学证明。这是包括默东天文台的布兰登·卡特和澳大利亚的加里·班亭在内的理论物理学家15年努力的结果。他们证明,描述一个平衡态黑洞周围的时空几何只需要3个参量,从而证实了惠勒的表述。

黑洞的参量是可以精确测量出来的,尽管是借助于理想实验。可以把一颗卫星放在围绕黑洞的轨道上,并测量卫星的轨道周期,从而得到黑洞的质量。黑洞的角动量可以通过比较朝向视界的不同部分的光线的偏转来测量。

对于上文提到的有一定质量的克尔-纽曼黑洞,电荷和角动量都有上限,也就是都受到保证视界这一条件的限制。如果在某个大质量恒星的引力坍缩过程中,这个限制被违反,黑洞就成了裸奇点,并能影响到宇宙中的远距离处。然而,物理学家有充足的理由相信,这种情况被自然规律所禁止,因而不会发生。



考虑量子隧道效应,黑洞会以精确的黑体谱进行热辐射,不带出任何信息。

黑洞将“蒸发”干净,洞内信息全部从宇宙中消失。

信息的丢失意味着,形成黑洞的量子纯态全部衰变成混合态。

根据量子理论的波粒二象性学说,微观实物粒子会象光波水波一样,具有干涉、衍射等波动特征,形成物质波(或称德布罗意波)。但日常所见的宏观物体,虽然是由服从这种量子力学规律的微观粒子组成,但由于其空间尺度远远大于这些微观粒子的德布罗意波长,微观粒子量子特性由于统计平均的结果而被掩盖了。因此,在通常的条件下,宏观物体整体上并不出现量子效应。然而,在温度降低或粒子密度变大等特殊条件下,宏观物体的个体组分会相干地结合起来,通过长程关联或重组进入能量较低的量子态,形成一个有机的整体,使得整个系统表现出奇特的量子性质。例如,原子气体的玻色-爱因斯坦凝聚、超流性、超导电性和约瑟夫逊效应等都是宏观量子效应。