-
1 视频
-
2 章节测验

2016年2月11日,LIGO宣布,于2015年9月14日首次探测到引力波,证实了爱因斯坦100年前所做的预测,直接探测到引力波的存在,弥补了爱因斯坦广义相对论实验验证中最后一块缺失的“拼图”。科学家花费数个月时间验证数据并通过审查程序,才宣布这个讯息,标志着全球各地研究团队数十年努力的最高潮。
2016年6月16日凌晨,LIGO合作组宣布:2015年12月26日03:38:53 (UTC),位于美国汉福德区和路易斯安那州的利文斯顿的两台引力波探测器同时探测到了一个引力波信号;这是继 LIGO 2015年9月14日探测到首个引力波信号之后,人类探测到的第二个引力波信号 。
2017年10月16日,全球多国科学家同步举行新闻发布会,宣布人类第一次直接探测到来自双中子星合并的引力波,并同时“看到”这一壮观宇宙事件发出的电磁信号。


引力波是横波,在远源处为平面波;有两个独立的偏振态;携带能量等。引力波携带能量,应可被探测到。
但引力波的强度很弱,而且,物质对引力波的吸收效率极低,直接探测引力波极为困难。曾有人宣称在实验室里探测到了引力波,但未得到公认。天文学家通过观测双星轨道参数的变化来间接验证引力波的存在 。例如,双星体系公转、中子星自转、超新星爆发,及理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。我们所预期在地球上可观测到的最强引力波会来自很远且古老的事件,在这事件中大量的能量发生剧烈移动(例子包括两颗中子星的对撞,或两个极重的黑洞对撞)。这样的波动会造成地球上各处相对距离的变动,但这些变动的数量级应该顶多只有10^-21。以LIGO引力波侦测器的双臂而言,这样的变化小于一颗质子直径的千分之一。

引力波有两个非常重要而且比较独特的性质。第一:不需要任何的物质存在于引力波源周围。这时就不会有电磁辐射产生。第二:引力波能够几乎不受阻挡的穿过行进途中的天体。然而,比如,来自于遥远恒星的光会被星际介质所遮挡,引力波能够不受阻碍的穿过。这两个特征允许引力波携带有更多的之前从未被观测过的天文现象信息。

