目录

  • 1 爱因斯坦与物理学的革命
    • 1.1 物理学的起源
    • 1.2 “物理”一词在中国
    • 1.3 物理学的诞生
    • 1.4 “1642年”在物理学上的意义
    • 1.5 热学的发展
    • 1.6 明朗天空的两朵乌云
    • 1.7 并非神童的爱因斯坦
    • 1.8 求职不顺的爱因斯坦
    • 1.9 爱因斯坦的丰收年
  • 2 相对论从乌云中降生
    • 2.1 相对论的建立(Ⅰ)
    • 2.2 相对论的建立(Ⅱ)
    • 2.3 相对论的建立(Ⅲ)
    • 2.4 狭义相对论(Ⅰ)
    • 2.5 狭义相对论(Ⅱ)
    • 2.6 双生子佯谬
    • 2.7 爱因斯坦的创新之处
    • 2.8 爱因斯坦的关键贡献
  • 3 激动人心的量子之谜
    • 3.1 元素周期律的发现
    • 3.2 放射性的发现
    • 3.3 探索原子模型
    • 3.4 人才培养的成功方式
    • 3.5 矩阵力学与波动力学
    • 3.6 奇妙的波粒二象性
    • 3.7 关于薛定谔
    • 3.8 关于爱因斯坦
    • 3.9 相对论性量子理论
  • 4 比一千个太阳还亮
    • 4.1 中子的发现
    • 4.2 裂变的发现
    • 4.3 链式反应的发现
    • 4.4 原子弹与氢弹的研制背景
    • 4.5 伟大的奥本海默与玩“龙尾巴”的斯洛廷
    • 4.6 爱开玩笑的费曼
    • 4.7 原子弹的研制
    • 4.8 氢弹的研制及聚变原理
    • 4.9 中国决心制造原子弹
    • 4.10 中国原子弹研制的趣事
    • 4.11 原子能的和平利用
    • 4.12 杨振宁对科学的贡献
  • 5 点燃科学的朝霞
    • 5.1 中心火——毕达哥拉斯的宇宙
    • 5.2 地心火
    • 5.3 哥白尼与“地心说”
    • 5.4 伽利略与土星的光环
    • 5.5 开普勒——行星运动三定律
    • 5.6 牛顿与万有引力
    • 5.7 牛顿的生平
    • 5.8 走下神坛的牛顿
  • 6 弯曲的时空——广义相对论
    • 6.1 狭义相对论的困难
    • 6.2 马赫原理
    • 6.3 等效原理
    • 6.4 爱因斯坦对新理论的构想
    • 6.5 黎曼几何
    • 6.6 广义相对论的建立
    • 6.7 广义相对论的三个实验验证
    • 6.8 相对论的进展
    • 6.9 探索引力波
    • 6.10 展望
    • 6.11 爱因斯坦的学术成就与影响
  • 7 从白矮星、中子星到黑洞
    • 7.1 历史上的黑洞
    • 7.2 恒星的演化
    • 7.3 西北望 射天狼
    • 7.4 白矮星与红巨星
    • 7.5 中子星与脉冲星
    • 7.6 超新星爆发
    • 7.7 球对称黑洞
    • 7.8 转动和带电的黑洞
  • 8 霍金与黑洞
    • 8.1 黑洞的“激发态”
    • 8.2 霍金的学业生涯
    • 8.3 初露锋芒的天才
    • 8.4 奇性定理与面积定理
    • 8.5 霍金辐射
    • 8.6 真空热效应与边界效应
    • 8.7 霍金的主要成就和中国之行
    • 8.8 黑洞与时空性质的研究
    • 8.9 信息疑难与霍金打赌
  • 9 星空与太阳系
    • 9.1 太阳与月球
    • 9.2 八颗行星及其卫星
    • 9.3 小行星
    • 9.4 彗星
    • 9.5 什么是流星雨?
    • 9.6 星空巡礼
    • 9.7 星系与星系团
  • 10 膨胀的宇宙,虫洞和时间机器
    • 10.1 什么是宇宙学原理?
    • 10.2 爱因斯坦有限无边的宇宙模型
    • 10.3 膨胀的宇宙
    • 10.4 暗物质与暗能量
    • 10.5 关于“大爆炸”的错误观念
    • 10.6 虫洞——时空隧道
    • 10.7 时空涨落与时空泡沫
    • 10.8 时间机器
  • 11 对时间的认识和探索
    • 11.1 古希腊与中国古代的时间观
    • 11.2 两种科学时空观的争论
    • 11.3 时间的性质
    • 11.4 对奇性定理的质疑与第三定律
    • 11.5 自由光线的加速度
    • 11.6 时间的度量
    • 11.7 热力学第零定律
  • 12 文明的起源--探索人类的童年
    • 12.1 宇宙何时创生
    • 12.2 宇宙的编年史
    • 12.3 崇拜与图腾、文明与野蛮
    • 12.4 海洋文明与大河文明(Ⅰ)
    • 12.5 海洋文明与大河文明(Ⅱ)
    • 12.6 埃及考古与希腊考古
    • 12.7 三版《尚书》之辩
    • 12.8 司马迁与《史记》
    • 12.9 班固兄妹与《汉书》
    • 12.10 陈寿与《三国志》
    • 12.11 司马光与《资治通鉴》
    • 12.12 商代考古
  • 13 东西方文明的演进和比较
    • 13.1 思想大解放的时代:百家争鸣
    • 13.2 列强争霸与韬光养晦
    • 13.3 灿烂的古希腊文明
    • 13.4 大统一的西方:马其顿与亚历山大科学院
    • 13.5 大统一的西方:布匿战争与罗马的崛起
    • 13.6 大统一的东方:领先世界的秦汉
    • 13.7 大统一的东方:帝国的兴衰
    • 13.8 冲击东西方的游牧民族
    • 13.9 处于世界巅峰的隋唐
    • 13.10 宋:繁荣和创造的黄金时代
    • 13.11 资本主义前夜的曙光
    • 13.12 革命与变革:危机与机遇并存
  • 14 阅读
    • 14.1 阅读
  • 15 直播
    • 15.1 第一次直播
    • 15.2 第二次直播
爱因斯坦对新理论的构想
  • 1 视频
  • 2 章节测验


新理论应是狭义相对论的推广

新理论的基础是:广义相对性原理、马赫原理、等效原理

万有引力可能是几何效应!



“狭义”表示它只适用于惯性参考系。这个理论的出发点是两条基本假设:狭义相对性原理和光速不变原理。理论的核心方程式是洛伦兹变换(群)(见惯性系坐标变换)。狭义相对论预言了牛顿经典物理学所没有的一些新效应(相对论效应),如时间膨胀 、长度收缩、横向多普勒效应、质速关系、质能关系等。狭义相对论已经成为现代物理理论的基础之一:一切微观物理理论(如基本粒子理论)和宏观引力理论(如广义相对论)都满足狭义相对论的要求。这些相对论性的动力学理论已经被许多高精度实验所证实。

狭义相对论不仅包括如时间膨胀等一系列推论,而且还包括麦克斯韦-赫兹方程变换等。狭义相对论需要使用引入张量的数学工具。

狭义相对论是对牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。

现在对于物理理论新的分类标准,是以其理论是否是决定论来划分经典与非经典的物理学,非量子理论都可以叫经典或古典理论。在此意义上,狭义相对论仍然是一种经典的理论。



广义相对性原理(广义协变性原理)可简述为:一切坐标系(包括非惯性系)都是平权的,即客观的真实的物理规律,应该在任意坐标系下均有效。为此,物理规律在任意坐标变换下应是协变的,故广义相对性原理也称为广义协变性原理。广义协变性对物理定律的内容并没有什么限制,只是对定律的数学表述提出了要求。爱因斯坦后来也是这样认为的:广义协变性只有通过等效原理才能获得物理内容。



马赫批判了牛顿的“水桶实验”,提出物体的运动是相对运动,速度、加速度也是相对的;物体所表现的惯性是宇宙中其他物质作用的结果。马赫原理提供了凭直觉理解相对性效应的方法,而广义相对论的方法则是高度数学化的。