-
1 视频
-
2 章节测验
AlphaGo
阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。
2016年3月,阿尔法围棋与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩;2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平,在GoRatings网站公布的世界职业围棋排名中,其等级分曾超过排名人类第一的棋手柯洁。
2017年5月27日,在柯洁与阿尔法围棋的人机大战之后,阿尔法围棋团队宣布阿尔法围棋将不再参加围棋比赛。2017年10月18日,DeepMind团队公布了最强版阿尔法围棋,代号AlphaGo Zero。

阿尔法围棋(AlphaGo)是一款围棋人工智能程序。其主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。
阿尔法围棋用到了很多新技术,如神经网络、深度学习、蒙特卡洛树搜索法等,使其实力有了实质性飞跃。美国脸书公司“黑暗森林”围棋软件的开发者田渊栋在网上发表分析文章说,阿尔法围棋系统主要由几个部分组成:一、策略网络(Policy Network),给定当前局面,预测并采样下一步的走棋;二、快速走子(Fast rollout),目标和策略网络一样,但在适当牺牲走棋质量的条件下,速度要比策略网络快1000倍;三、价值网络(Value Network),给定当前局面,估计是白胜概率大还是黑胜概率大;四、蒙特卡洛树搜索(Monte Carlo Tree Search),把以上这三个部分连起来,形成一个完整的系统。


设计团队:
戴密斯·哈萨比斯(Demis Hassabis),人工智能企业家,DeepMind Technologies公司创始人,人称“阿尔法围棋之父”。4岁开始下国际象棋,8岁自学编程,13岁获得国际象棋大师称号。17岁进入剑桥大学攻读计算机科学专业。在大学里,他开始学习围棋。2005年进入伦敦大学学院攻读神经科学博士,选择大脑中的海马体作为研究对象。两年后,他证明了5位因为海马体受伤而患上健忘症的病人,在畅想未来时也会面临障碍,并凭这项研究入选《科学》杂志的“年度突破奖”。2011年创办DeepMind Technologies公司,以“解决智能”为公司的终极目标。
大卫·席尔瓦(David Silver),剑桥大学计算机科学学士、硕士,加拿大阿尔伯塔大学计算机科学博士,伦敦大学学院讲师,Google DeepMind研究员,阿尔法围棋主要设计者之一。
除上述人员之外,阿尔法围棋设计团队核心人员还有黄士杰(Aja Huang)、施恩·莱格(Shane Legg)和穆斯塔法·苏莱曼(Mustafa Suleyman)等。

