舌尖上的植物学

许智宏 邓兴旺 万建民 黄三文 李磊

目录

  • 1 植物生长及怎样看世界
    • 1.1 植物的一生
    • 1.2 神奇的植物
    • 1.3 植物对本身的生长发育的调控
    • 1.4 植物对空间的认识和利用
    • 1.5 植物的绿色革命
    • 1.6 植物的特点
    • 1.7 光与植物
    • 1.8 植物如何看世界
    • 1.9 光敏色素的发现
  • 2 光合作用:  推动地球演变的“第一推动”
    • 2.1 热力学的诞生
    • 2.2 生物体:大自然的能量转化站
    • 2.3 光合作用:上帝的“第一推动”
    • 2.4 光合作用的循环系统
    • 2.5 光合作用改变命运
    • 2.6 大氧化事件
    • 2.7 光合作用的巨大能量
    • 2.8 自然界的碳氧循环
  • 3 植物次生代谢与人生六味
    • 3.1 植物的三套密码
    • 3.2 最正确食用土豆的方式
    • 3.3 植物的次生代谢
    • 3.4 次生代谢分类之生物碱
    • 3.5 次生代谢的其他分类
    • 3.6 闻风丧胆的毒植物
    • 3.7 动物是如何破解植物的第二套密码
    • 3.8 味觉与味道
    • 3.9 混合味道
    • 3.10 "麻、辣、烫“是味觉么?
  • 4 植物分类:破解植物的终极密码
    • 4.1 为什么人类是地球上最高级的动物
    • 4.2 植物分类之藻类
    • 4.3 植物分类之苔藓类与蕨类
    • 4.4 植物分类之种子植物
    • 4.5 植物分类之被子植物
    • 4.6 疟疾的历史危害
    • 4.7 抗疟特效药研制历程
  • 5 作物驯化:破解植物的基因密码
    • 5.1 农业与农作物
    • 5.2 泱泱大科禾本科
    • 5.3 禾本科的驯化
    • 5.4 玉米的驯化过程
    • 5.5 “新月”之光
    • 5.6 稻花香里说当年
    • 5.7 不经意的邂逅
  • 6 植物大航海:作物驯化茄科篇
    • 6.1 茄科植物的历史
    • 6.2 无辣不欢
    • 6.3 辣椒的驯化
    • 6.4 辣椒到底有多辣
    • 6.5 罗曼蒂克之果
    • 6.6 大番小茄落玉盘
    • 6.7 神奇的马铃薯
    • 6.8 一不小心改变了世界
    • 6.9 病魔的幽灵
  • 7 富于古典浪漫主义的十字花科
    • 7.1 蔬菜之王——十字花科
    • 7.2 大白菜的驯化
    • 7.3 小白菜的驯化
    • 7.4 油菜的驯化
    • 7.5 甘蓝家族
    • 7.6 结球甘蓝
    • 7.7 花椰菜
    • 7.8 其他甘蓝生物
    • 7.9 模式生物
  • 8 植物和人类的营养健康
    • 8.1 植物是人类食物主要提供者
    • 8.2 我国居民的营养和健康状况
    • 8.3 谷类及薯类
    • 8.4 豆类及豆制品
    • 8.5 十字花科、茄科与葫芦科植物简述
    • 8.6 伞形科蔬菜
    • 8.7 百合科植物
    • 8.8 水生蔬菜
    • 8.9 水果简述
    • 8.10 药用植物
  • 9 现代驯化、传统育种与生物技术
    • 9.1 大刍草如何变成玉米
    • 9.2 野生稻如何变成水稻
    • 9.3 作物的传统育种(一)
    • 9.4 作物的传统育种(二)
    • 9.5 现代农业生物技术(一)
    • 9.6 现代农业生物技术(二)
  • 10 中国农业的未来走向
    • 10.1 全球粮油生产态势
    • 10.2 中国的主要农业生产
    • 10.3 我国的森林生态和林业生产
    • 10.4 我国农业发展面临的挑战
    • 10.5 中国农作物育种中高新科技的应用
    • 10.6 中国农业科技获得瞩目成就
    • 10.7 未来植物科学的导向
  • 11 生物营养增强与高端农产品产业
    • 11.1 我国作物育种的成就
    • 11.2 我国作物育种所面临的挑战
    • 11.3 育种学的使命是什么
    • 11.4 如何提高国民的营养状况
    • 11.5 健康功能因子强化的水稻
    • 11.6 如何利用生物技术培育功能性水稻
  • 12 美味蔬菜的遗传密码
    • 12.1 五菜为充
    • 12.2 基因组学
    • 12.3 蔬菜基因组
    • 12.4 蔬菜变异组
    • 12.5 苦尽甘来
    • 12.6 美味番茄
    • 12.7 马铃薯再驯化
  • 13 现代技术转基因
    • 13.1 转基因育种
    • 13.2 现代农业生物技术之转基因
    • 13.3 我国农业发展的科技应对
    • 13.4 提问交流
  • 14 阅读
    • 14.1 阅读
  • 15 直播
    • 15.1 第一次直播
    • 15.2 第二次直播
现代农业生物技术(一)
  • 1 视频
  • 2 章节测验


题要:

在生产实践中,为了提高粮食产量,常进行育种研究解决生产问题。利用现代生物技术培育的转基因作物是解决粮食问题的一条重要途径。随着生物细胞组织培养、DNA重组和转基因技术等一系列现代生物技术的不断改进和完善,生物技术已经成为当今世界发展最快、最活跃和最具潜力的高新技术领域之一

我国农业生产的现状和发展趋势来看,仅仅利用传统的常规育种方法已经很难满足我国农业生产对作物新品种的要求,因而借助于农业生物技术与常规育种方法相结合的方式将会创造出更多的新种质,进而培育出更多高产、优质和多抗的新品种。作物生物技术育种所研究的主要内容涉及到在生物体内的细胞组织、染色体和基因等方面对其遗传基础进行改造和改良,以便获得具有更大增产潜力的作物新品种。

对常规育种与生物技术育种


  常规育种技术是基于对种内和种间杂种优势的利用,很有限而且是依靠育种家的经验在田间和畜舍对动植物作表型选择;主要有杂交育种,单倍体育种,多倍体育种等。 而生物技术的强大之处在于能突破动物、植物、微生物之间的界限作基因的转移,这就极大地拓宽了种质资源和杂种优势的利用,而且可以直接作基因型的早期选择和在实验室内操作;可以大大提高育种的目标性和效率,缩短育种周期和减少工作量。

生物技术育种取得的成就


  迄今为止,国际上已成功地把有实用价值的基因如抗病毒、抗虫、抗除草剂,改变蛋白质组成、提高淀粉含量、雄性不育、改变花色和花形,延长保鲜期等的基因分别转人植物。农业生物技术育种的研究成果正在越来越多地应用于农业生产,深刻地影响着农业的生产方式和效益。据美国农业部(USDA)1996年对美国50年来畜牧生产中各种科学技术所起作用的总结,品种改良的作用居各项技术之首。1996年亚拉巴马州3/4以上的棉花是抗虫害的遗传工程棉花。另外在玉米育种研究领域,玉米育种专家和分子生物学家携手,共同致力于玉米新品种的研究与开发。认识到相互的合作才是发展现代生物技术和现代农业的正确道路,科学家们已经通过应用分子标记手段找到了我国玉米自交系的主要类群,并成功地绘制了我国第一张玉米分子标记连锁图谱,选育出了抗虫转基因玉米品种,并已走出了实验室进入了国家区试,有望在未来的几年得到推广应用。克隆技术在玉米育种上也已启动,克隆玉米部分优良基因的工作进展顺利,并取得初步成效。分子标记辅助选择技术也开始进入育种程序。在未来的育种领域,不管何类作物,都将不可避免的广泛地使用生物技术。而生物技术也将在未来的农业生产的各领域彰显其不可替代的卓越的增产潜能。


现代农业生物技术