目录

  • 1 绪论
    • 1.1 资源推荐
    • 1.2 基础知识
    • 1.3 第1章测试题
    • 1.4 思政案例
    • 1.5 微实践
    • 1.6 第1章学习自评
  • 2 统计图表
    • 2.1 基础知识
    • 2.2 第2章测试题
    • 2.3 思政案例
    • 2.4 微展示
    • 2.5 第2章学习自评
  • 3 集中量数
    • 3.1 基础知识
    • 3.2 第3章测试题
    • 3.3 思政案例
    • 3.4 微实践
    • 3.5 第3章学习自评
  • 4 差异量数
    • 4.1 基础知识
    • 4.2 第4章测试题
    • 4.3 思政案例
    • 4.4 微实践
    • 4.5 第4章学习自评
  • 5 相关系数
    • 5.1 基础知识
    • 5.2 第5章测试题
    • 5.3 思政案例
    • 5.4 微分辨
    • 5.5 第5章学习自评
  • 6 概率分布
    • 6.1 基础知识
    • 6.2 第6章测试题
    • 6.3 阅读与思考
    • 6.4 微展示
    • 6.5 第6章学习自评
  • 7 参数估计
    • 7.1 基础知识
    • 7.2 第7章测试题
    • 7.3 阅读与思考
    • 7.4 微实践
    • 7.5 第7章学习自评
  • 8 假设检验
    • 8.1 基础知识
    • 8.2 第8章测试题
    • 8.3 思政案例
    • 8.4 微研究
    • 8.5 第8章学习自评
    • 8.6 参数估计与假设检验联合运算
  • 9 方差分析
    • 9.1 基础知识
    • 9.2 第9章测试题
    • 9.3 思政案例
    • 9.4 微实践
    • 9.5 第9章学习自评
  • 10 卡方检验
    • 10.1 基础知识
    • 10.2 第10章测试题
    • 10.3 思政案例
    • 10.4 微展示
    • 10.5 第10章学习自评
  • 11 非参数检验
    • 11.1 基础知识
    • 11.2 第11章测试题
    • 11.3 阅读与思考
    • 11.4 微实践
    • 11.5 第11章学习自评
  • 12 线性回归
    • 12.1 基础知识
    • 12.2 第12章测试题
    • 12.3 思政案例
    • 12.4 微研究
    • 12.5 第12章学习自评
  • 13 考研准备——心理统计部分
    • 13.1 历年考研大纲——心理统计部分
    • 13.2 历年心理统计考研真题
思政案例

                      阅读后思考:卡方检验的数据有什么特点?

 来源:微信公众号”丁点帮你“!

从赌色子到新冠肺炎,一文帮你弄懂卡方检验


小金赌色子输了很多钱,为了看色子是否有问题,他偷了一颗拿回家想偷偷验证一下是否有人动手脚。






小金闷在家丢了一天,一共丢了902次,而且每一次都做了记录(丢的是昏天黑地,可脑补这个画面)。
下面表格就是小金记录的获得的点数情况,比如一共有242次(27%)出现1点,有56次(6%)出现2点……有196次(22%)出现6点。

小金怎样通过”狂丢色子“来判断其是否有问题呢?
这就需要用到卡方检验了,实际上也是假设检验的大逻辑。
我们知道小金一共丢了902次,假设这颗色子是正常均匀的,那么每次丢色子,每一点出现的可能性都是1/6,所以理论上每一点出现的次数应该都是:150.33=902/6次。
如下表:我们把每一点实际出现的次数与理论情况下应该出现的次数做一个对比,其中实际观察次数用A表示,理论次数用T表示:

采用假设检验的标准语言来验证就是:
H0:这颗色子是均匀公平,每一点出现的可能性都为1/6;
H1:这颗色子不是均匀公平的,每一点点数出现的概率不都相同;
如果H0假设成立,那么“观察次数”和“理论次数”之间不会差很多;可是如果两者的差距过大,达到我们规定的某个水平,就认为在H0假设成立的情况下是不会出现的,此时就会拒绝原假设,即认为这个色子不是均匀的。
那怎么来计算这个差呢?
依照我们讲标准差的思路,如果直接将实际情况的点数与理论情况点数相减再加和取平均数,基本会得到0的结果,没有什么意义,而取绝对值运算又不方便,所以还是得通过平方。这就是卡方中平方的由来。


上面这个计算公式,A代表“实际频数”,T代表“理论频数”。
如果把这个公式应用到小金丢色子的例子,就会得到:

卡方值为274.92,其对应的P值小于0.01,也就意味着,如果原假设成立(色子没问题),那么“理论与现实”出现这么大的差距的可能低于5%,我们认为这是不可能,因此,要拒绝原假设,认为“色子有问题”。
所以“十赌九输”是有原因的。
好了,回到今天的正题,小伙伴们可能觉得上面的例子和平常用到的卡方检验好像不太一样。
实际上,原理完全一致。
卡方检验最常用的是检验两个率是否一致,对照上述“丢色子”的例子,我们会先假设这两个率(注意是指总体率)相等,通过相等的总体率,再反推理论发生的频数,然后计算实际的观察频数与理论频数的卡方值来判断差距是否足够大,从而决定假设是否可以被拒绝。
下面以新冠肺炎为例,说明一下卡方检验的应用。
为比较A、B两个城市新冠肺炎病例的检出情况,分别随机抽取A地377人,B地301人,进行核酸检测。结果见下表(数据纯属虚构),现判断两个城市的新冠肺炎检出率是否相同?

如上表,A地的检出率是19.89%;B地的检出率是32.89%,卡方检验就要来判断这两个样本率所代表的总体率是否相等。
现在我们假设它们相等,那怎么计算理论频数呢?
此时就需要用到“合计检出率——25.66% “来算,这个数据就相当于上述色子例子中的1/6,是一个标准。
所以,如果两城市新冠肺炎检出率没有区别,且大概都为25.66%,那理论上A地会检出多少例呢?96.75(377*25.66%),而未检出的就为280.25(377-96.75)。
同理,B地会检出77.25(301*25.66%),未检出的就为223.75(301-77.25)。
现在我们就得到了各城市检出与未检出的理论频数,从而就能计算卡方值。
该卡方值对应的P值小于0.05,所以可以认为A、B两个城市新冠肺炎的检出率不一致,B地检出率更高,感染情况更严重。