目录

  • 1 绪论
    • 1.1 飞行器的基本概念
      • 1.1.1 飞行器
      • 1.1.2 航空器
      • 1.1.3 飞机
    • 1.2 飞机的主要组成部分及功用
      • 1.2.1 飞机的主要组成
      • 1.2.2 各组成部分的功用
    • 1.3 飞机的研制过程
    • 1.4 单元测验
  • 2 飞机结构分析概述
    • 2.1 飞机结构设计的基本要求
    • 2.2 飞机主要结构材料
    • 2.3 典型飞行状态的过载
    • 2.4 飞机设计规范简介
    • 2.5 受剪板式薄壁结构
      • 2.5.1 受剪板式薄壁结构模型的假设
      • 2.5.2 板的平衡
      • 2.5.3 杆的平衡
    • 2.6 薄壁结构的承力特点
      • 2.6.1 薄壁结构的受压特点
      • 2.6.2 薄板的剪切稳定性
      • 2.6.3 组合壁板的稳定性
      • 2.6.4 集中力的扩散
    • 2.7 薄壁结构的静不定度
    • 2.8 薄壁结构的受力分析
      • 2.8.1 平面薄壁结构的受力分析
      • 2.8.2 空间薄壁结构的受力分析
    • 2.9 单元测验
  • 3 机翼、尾翼结构分析
    • 3.1 机翼、尾翼的功用与要求
    • 3.2 机翼、尾翼的外载特点
      • 3.2.1 机翼的外载特点
      • 3.2.2 尾翼的外载特点
    • 3.3 机翼结构的典型元件与典型受力型式
      • 3.3.1 机翼结构的典型元件
      • 3.3.2 机翼结构的典型受力型式
    • 3.4 机翼典型受力型式的传力分析
      • 3.4.1 受力分析的基本方法
      • 3.4.2 双梁式直机翼的传力分析
      • 3.4.3 单块式机翼的传力分析
      • 3.4.4 多腹板式机翼的传力分析
      • 3.4.5 机翼各典型元件的受力功用
      • 3.4.6 各典型受力型式结构受力特点的比较
    • 3.5 后掠翼与三角翼的受力分析
      • 3.5.1 后掠机翼的受力特点
      • 3.5.2 单块式后掠机翼的传力
      • 3.5.3 三角翼的结构特点
    • 3.6 气动弹性问题概述
      • 3.6.1 机翼的扭转扩大
      • 3.6.2 副翼反效
      • 3.6.3 颤振
    • 3.7 尾翼及操纵面的结构分析
      • 3.7.1 尾翼的安定面、飞机操纵面的结构分析
      • 3.7.2 全动平尾
    • 3.8 单元测验
  • 4 机身结构分析
    • 4.1 机身的功用及设计要求
    • 4.2 机身的外载和受力特点
    • 4.3 机身典型结构型式的传力分析
      • 4.3.1 机身结构的组成元件及功用
      • 4.3.2 机身结构的典型受力型式
      • 4.3.3 机身结构的受力分析
      • 4.3.4 运输机有效载重引起的地板载荷的传力分析
    • 4.4 机身加强框
    • 4.5 机身开口的受力特点
    • 4.6 气密座舱的受力特点
    • 4.7 单元测验
  • 5 飞机起落装置
    • 5.1 起落架的安装形式
    • 5.2 起落架的构造形式
    • 5.3 起落架的收放形式
    • 5.4 起落架的减震机构
    • 5.5 起落架的机轮和刹车
    • 5.6 起飞降落的一些方法
    • 5.7 单元测验
  • 6 飞机操纵系统
    • 6.1 飞机操纵系统的分类
    • 6.2 飞机主操纵系统
    • 6.3 飞机辅助操纵系统
    • 6.4 自动驾驶仪的组成、功用及工作原理
    • 6.5 单元测验
  • 7 飞机动力装置
    • 7.1 航空发动机的分类
    • 7.2 活塞发动机
    • 7.3 燃气涡轮发动机
      • 7.3.1 涡轮喷气发动机
      • 7.3.2 其他燃气涡轮发动机
    • 7.4 冲压发动机
    • 7.5 发动机在飞机上的安装
    • 7.6 单元测验
  • 8 机载设备
    • 8.1 航空仪表的工作原理
      • 8.1.1 飞行仪表
      • 8.1.2 发动机仪表
    • 8.2 航空电子系统概述
      • 8.2.1 航空电子系统的概念
      • 8.2.2 通信系统
      • 8.2.3 导航系统
      • 8.2.4 探测系统
      • 8.2.5 电子战系统
    • 8.3 飞机飞行控制系统概述
      • 8.3.1 飞行控制系统分类、构成和工作原理
      • 8.3.2 自动飞行控制系统
    • 8.4 飞机通用系统概述
      • 8.4.1 飞机机电系统
      • 8.4.2 飞机环境控制与生命保障系统
      • 8.4.3 航空武器系统
      • 8.4.4 座舱显示系统、控制和记录设备
    • 8.5 单元测验
飞机结构设计的基本要求
  • 1 课堂内容
  • 2 随堂练习

与其它类型结构相比,飞机结构有其特殊性。首先,对质量特别敏感—飞机本身的质量必须尽可能轻,以便多装人员、货物或设备,因而对机构材料要求高;其次,飞机部件的尺寸大而刚度小—有的飞机机翼长达几十米,本身又是薄壁结构,容易变形,因此飞机结构的准确性不容易保证;再有,飞机零件数量特别多,装配工作量大,装配特别费时。

1. 气动要求

结构应满足飞行性能所要求的气动外形和表面质量。为了保证飞机在气动上具有设定的良好稳定性和操纵性,机翼、尾翼与机身不允许有过大的变形。

2. 强度、刚度、寿命、可靠性和质量要求

结构应在满足强度、刚度、寿命和可靠性的前提下,结构重量尽可能轻。这一要求又简称为最小质量要求,或质量要求。

3. 使用维护要求

结构便于检查、维护和修理,易于运输、储存和保管。

4. 工艺性要求

在一定生产条件下要求工艺简单、制造方便、生产周期短、成本低。这些需要结合机种、产量、需要迫切性和加工条件等综合考虑。

5. 成本要求

包含设计成本、制造成本和运营成本在内。

上诉五项设计要求之间的关系:相辅相成相互联系相互制约相互矛盾。在实际的结构设计中,需要根据实际的设计要求及相关因素进行综合考虑和权衡。