目录

  • 1 基础资源
    • 1.1 2019年校级精品资源共享课建设申报书
    • 1.2 课程标准
    • 1.3 授课计划
    • 1.4 使用教材
    • 1.5 参考教材
    • 1.6 考试说明
    • 1.7 学习指导
    • 1.8 获奖成果展示
  • 2 微课资源
    • 2.1 函数
      • 2.1.1 函数的概念
      • 2.1.2 分段函数
      • 2.1.3 函数的奇偶性
      • 2.1.4 函数的单调性
      • 2.1.5 反函数
      • 2.1.6 反正弦函数
    • 2.2 极限
      • 2.2.1 数列的极限
      • 2.2.2 函数的极限
      • 2.2.3 极限的四则运算
    • 2.3 导数的应用
      • 2.3.1 洛必达法则
      • 2.3.2 函数的单调性
      • 2.3.3 极值
    • 2.4 函数与极限
      • 2.4.1 函数的概念
      • 2.4.2 反函数
      • 2.4.3 分段函数
      • 2.4.4 函数的奇偶性
      • 2.4.5 函数的单调性
      • 2.4.6 反正弦函数
      • 2.4.7 数列极限
      • 2.4.8 函数极限
      • 2.4.9 极限的四则运算法则
      • 2.4.10 两个重要定理
      • 2.4.11 无穷大与无穷小
      • 2.4.12 无穷小的比较
    • 2.5 导数与微分
      • 2.5.1 导数的定义
      • 2.5.2 导数的运算法则
      • 2.5.3 导数与连续的关系
      • 2.5.4 复合函数求导法
      • 2.5.5 反函数求导法
      • 2.5.6 隐函数求导法
      • 2.5.7 高阶导数
      • 2.5.8 微分
    • 2.6 微分中值定理及应用
      • 2.6.1 微分中值定理
      • 2.6.2 洛必达法则
      • 2.6.3 洛必达法则练习题
      • 2.6.4 其他未定式求极限
      • 2.6.5 函数的单调性
      • 2.6.6 函数的极值
      • 2.6.7 函数的最值
      • 2.6.8 最值的应用
    • 2.7 不定积分
      • 2.7.1 不定积分的概念
      • 2.7.2 不定积分的性质
      • 2.7.3 第一换元法
      • 2.7.4 第二换元法
      • 2.7.5 分部积分法
    • 2.8 定积分
      • 2.8.1 定积分的概念
      • 2.8.2 定积分的性质
      • 2.8.3 定积分基本定理
      • 2.8.4 定积分第一换元法
      • 2.8.5 定积分分部积分法
  • 3 教学资源
    • 3.1 预备知识     生活之基
      • 3.1.1 电子教案
      • 3.1.2 PPT课件
      • 3.1.3 集合
        • 3.1.3.1 集合的概念
        • 3.1.3.2 集合的表示方法
        • 3.1.3.3 集合之间的关系
      • 3.1.4 集合的运算
        • 3.1.4.1 并集
        • 3.1.4.2 交集
        • 3.1.4.3 补集
      • 3.1.5 不等式
        • 3.1.5.1 不等式的性质
        • 3.1.5.2 不等式的解法
        • 3.1.5.3 一元二次不等式的解法
      • 3.1.6 指数与对数
        • 3.1.6.1 指数
        • 3.1.6.2 对数
      • 3.1.7 数列
        • 3.1.7.1 数列的概念
        • 3.1.7.2 等差数列
        • 3.1.7.3 等比数列
    • 3.2 第一章  函数     生活之华
      • 3.2.1 学习指导
      • 3.2.2 知识结构图
      • 3.2.3 电子教案
      • 3.2.4 PPT课件
      • 3.2.5 函数的概念
        • 3.2.5.1 函数的两个基本要素
        • 3.2.5.2 函数的定义
        • 3.2.5.3 函数定义域的求法
        • 3.2.5.4 函数的表示法
      • 3.2.6 函数的几种特性
        • 3.2.6.1 单调性
        • 3.2.6.2 奇偶性
        • 3.2.6.3 周期性
        • 3.2.6.4 有界性
      • 3.2.7 反函数与基本初等函数
        • 3.2.7.1 反函数
        • 3.2.7.2 基本初等函数
          • 3.2.7.2.1 动画
      • 3.2.8 复合函数与初等函数
        • 3.2.8.1 复合函数
        • 3.2.8.2 初等函数
        • 3.2.8.3 复合函数与初等函数-微视频
      • 3.2.9 函数基础练习题
    • 3.3 第2章 极限与连续    微积分之魂
      • 3.3.1 学习指导
      • 3.3.2 知识结构图
      • 3.3.3 电子教案
      • 3.3.4 PPT课件
      • 3.3.5 极限的概念与性质
        • 3.3.5.1 数列极限
        • 3.3.5.2 函数的极限
        • 3.3.5.3 极限的性质
        • 3.3.5.4 极限的概念-微视频
        • 3.3.5.5 新建课程目录
      • 3.3.6 极限的四则运算法则
        • 3.3.6.1 极限的四则运算法则(1)-微视频
        • 3.3.6.2 极限的四则运算法则(2)-微视频
      • 3.3.7 两个重要极限
        • 3.3.7.1 两个重要极限(一)—微视频
        • 3.3.7.2 两个重要极限(二)—微视频
      • 3.3.8 无穷小量与无穷大量
        • 3.3.8.1 无穷小量
        • 3.3.8.2 无穷大量
        • 3.3.8.3 无穷小的比较
        • 3.3.8.4 无穷小量与无穷大量(一)-微视频
        • 3.3.8.5 无穷小量与无穷大量(二)-微视频
      • 3.3.9 函数的连续性
        • 3.3.9.1 函数连续性的定义
        • 3.3.9.2 函数间断点
        • 3.3.9.3 初等函数的连续性
        • 3.3.9.4 闭区间上连续函数的性质
        • 3.3.9.5 函数的连续性(一)-微视频
        • 3.3.9.6 函数的连续性(二)-微视频
      • 3.3.10 极限基础练习题
    • 3.4 第3章 导数与微分    微积分之魅
      • 3.4.1 学习指导
      • 3.4.2 知识结构图
      • 3.4.3 电子教案
      • 3.4.4 PPT课件
      • 3.4.5 导数概念
        • 3.4.5.1 引例
        • 3.4.5.2 导数的几何意义
        • 3.4.5.3 函数可导与连续的关系
        • 3.4.5.4 导数的定义
        • 3.4.5.5 基本初等函数的导数
        • 3.4.5.6 导数的概念01-微视频
        • 3.4.5.7 导数的概念02-微视频
      • 3.4.6 求导法则
        • 3.4.6.1 函数的和、差、积、商的求导法则
        • 3.4.6.2 求导四则运算-微视频
        • 3.4.6.3 反函数的求导法则
        • 3.4.6.4 反函数求导法则-微视频
        • 3.4.6.5 复合函数的求导法则
        • 3.4.6.6 复合函数求导法则-微视频
        • 3.4.6.7 隐函数求导
        • 3.4.6.8 隐函数求导法则-微视频
        • 3.4.6.9 对数求导法
        • 3.4.6.10 对数求导法则-微视频
      • 3.4.7 高阶导数
        • 3.4.7.1 高阶导数01-微视频
        • 3.4.7.2 高阶导数02-微视频
      • 3.4.8 微分
        • 3.4.8.1 微分的概念
        • 3.4.8.2 微分运算法则
        • 3.4.8.3 微分在近似计算中的应用
        • 3.4.8.4 微分01-微视频
        • 3.4.8.5 微分02-微视频
      • 3.4.9 导数与微分基础练习题
      • 3.4.10 习题讲解01-微视频
      • 3.4.11 习题讲解02-微视频
    • 3.5 第4章 导数的应用   微积分之用
      • 3.5.1 学习指导
      • 3.5.2 知识结构图
      • 3.5.3 电子教案
      • 3.5.4 PPT课件
      • 3.5.5 中值定理
      • 3.5.6 洛必达法则
      • 3.5.7 函数的单调性与极值
        • 3.5.7.1 函数单调性的判定
        • 3.5.7.2 函数的极值及其求法
        • 3.5.7.3 函数的最值
      • 3.5.8 函数图像的描绘
        • 3.5.8.1 曲线的凹凸性与拐点
        • 3.5.8.2 函数图形的描绘
      • 3.5.9 导数应用基础练习题
    • 3.6 第5章 不定积分    微积分之辩
      • 3.6.1 学习指导
      • 3.6.2 知识结构图
      • 3.6.3 电子教案
      • 3.6.4 PPT课件
      • 3.6.5 不定积分的概念与性质
        • 3.6.5.1 原函数与不定积分
        • 3.6.5.2 不定积分的几何意义
        • 3.6.5.3 不定积分的性质
        • 3.6.5.4 基本积分公式
        • 3.6.5.5 简单的不定积分计算
      • 3.6.6 换元积分法
        • 3.6.6.1 第一类换元积分法(凑微分法)
        • 3.6.6.2 第二类换元积分法
      • 3.6.7 分部积分法
      • 3.6.8 不定积分基础练习题
    • 3.7 第6章 定积分    微积分之髓
      • 3.7.1 学习指导
      • 3.7.2 知识结构图
      • 3.7.3 电子教案
      • 3.7.4 PPT课件
      • 3.7.5 定积分的概念与性质
        • 3.7.5.1 定积分问题举例
        • 3.7.5.2 定积分的定义
        • 3.7.5.3 定积分的性质
      • 3.7.6 牛顿-莱布尼茨公式
        • 3.7.6.1 牛顿-莱布尼茨公式
      • 3.7.7 定积分的计算
        • 3.7.7.1 定积分的换元积分法
        • 3.7.7.2 定积分的分部积分法
      • 3.7.8 定积分的应用
        • 3.7.8.1 用定积分求平面图形的面积
        • 3.7.8.2 旋转体的体积
      • 3.7.9 定积分基础练习题
    • 3.8 第七章 微分方程    微积分之拓
      • 3.8.1 学习指导
      • 3.8.2 知识结构图
      • 3.8.3 电子教案
      • 3.8.4 PPT课件
      • 3.8.5 微分方程的基本概念
        • 3.8.5.1 引例
        • 3.8.5.2 微分方程的概念
      • 3.8.6 一阶微分方程
        • 3.8.6.1 可分离变量的微分方程
        • 3.8.6.2 一阶线性微分方程
      • 3.8.7 二阶线性微分方程
        • 3.8.7.1 二阶线性微分方程解的结构
        • 3.8.7.2 二阶常系数线性齐次微分方程
        • 3.8.7.3 二阶常系数线性非齐次微分方程
    • 3.9 综合练习题
      • 3.9.1 函数
      • 3.9.2 极限
      • 3.9.3 导数与微分
      • 3.9.4 导数的应用
      • 3.9.5 不定积分
      • 3.9.6 定积分
      • 3.9.7 微分方程
  • 4 高等数学项目化课题
    • 4.1 项目化课题要求
    • 4.2 项目化课题题目
  • 5 拓展资源
    • 5.1 概念术语
    • 5.2 数学图形
    • 5.3 数学公式
  • 6 特色资源
    • 6.1 数学文化
      • 6.1.1 微积分发展简史
    • 6.2 数学之美
      • 6.2.1 玩转勾股数
      • 6.2.2 建筑与数学法则
    • 6.3 数学家
      • 6.3.1 丘成桐
      • 6.3.2 苏步青
  • 7 著作专区
    • 7.1 数学与诗歌(编著)
      • 7.1.1 专著书样
      • 7.1.2 专著获奖
      • 7.1.3 专著目录
      • 7.1.4 第一章 半字诗
      • 7.1.5 第二章 一字诗
      • 7.1.6 第三章 十字诗
      • 7.1.7 第四章 数字入诗
      • 7.1.8 第五章 诗词
      • 7.1.9 第六章 数字对联
      • 7.1.10 第七章 妙题入联
      • 7.1.11 第八章 妙题入诗
      • 7.1.12 第九章 数字入迷
      • 7.1.13 第十章 回文诗
      • 7.1.14 第十一章 情诗
项目化课题题目

形成性考核题目:

一、文字接龙:利用文字接龙的形式将中国20名科学家与20名外国数学家形成一个闭环,并给出各位科学家及数学家的简介。

二、测量:仅用一张A4纸与计算器测出聊城市电视塔(聊城市柳园路与财干路的东南角)的高度。

三、数独:编写一个程序,计算出3*3,4*4,5*5的个数。

四、勾股定理:勾股定理的证明现在发现已经有400多种证明方法,请您举出5种,并简要说出中西方证明方法各具有些特点?

五、花草:用数据体现至少20种花草的叶绿素含量,并说出这些花草如何更好的养殖。

六、线路:某装修公司要在某建筑物内铺设线路,在线路中需要7米、5米、4米三种不同规格的PTC管,分别至少180根、210根、160根,现购置了一批规格为16米的PTC管若干,如何截取才能使用料最省?

七、物流:某公司在三个地方有三个分厂,生产同一种产品,其产量分别为300箱、400箱、500箱。需要供应四个地方的销售,这四个地方的产品需求分别为400箱、250箱、550箱、200箱。三个分厂到四个销地的单位运价如表所示。


问(1)应该如何安排运输方案,使得总运费为最小?
(2)如果二分厂的产量从400箱提高到600箱,那么应如何安排运输方案,使得总运费最小?

八、医护:某乡镇医院接到一个求助电话,该乡镇一个比较偏远的村庄发生事故,需要紧急救援。上级领导要求该医院:派12名医护人员前往救援,并且要求医护人员在3小时内赶到,该乡镇距离医院40公里。该医院只有1辆汽车,连同司机一次最多拉5人(司机不是医护人员),汽车的速度为60公里/小时,试研究以下问题:

(1)一次一次接送,12名医护人员能否全部按时赶到?

(2)为了节省时间,在汽车拉4人走的时候,其余医护人员步行往前赶,这种方式能否赶到?假定人步行的速度为5公里/小时。

(3)在没有其它辅助条件的前提下,有没有更快、更保险的方案?

九、机械:某厂拥有4台磨床、两台立式钻床、3台卧式钻床、一台镗床和一台刨床,用以生产7种产品,记作P1至P7。工厂收益规定作产品售价减去原材料费用之剩余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于表1,

本月(一月)和随后的5个月中,下列机床停工维修:

    一月    磨床一台

        二月   卧式钻床2台

        三月   镗床一台

        四月   立式钻床1台

        五月   磨床一台,立式钻床一台上台下

        六月   刨床一台,卧式钻床1台

各种产品各月份的市场容量如表2:

每种产品存货量最多可到100件。存费每件每月为0.5。现在无存货。要求到6月底每种产品有存货50件。工厂每周工作6天,每天2班,每班8小时。不需要考虑排队等待加工的问题。

1、为使收益最大,工厂应如何安排各月份各种产品的产量?考虑价格的某种变化及引入新机床对计划和收益的影响。

注意,可假设每月仅有24个工作日。

2、在工厂计划问题中,各台机床的停工维修不是如问题1那样规定3月份,而是选择最合适的月份维修。除了磨床外,每台机床在这个月中的一个月必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值如何?

十、车库的车位停车设计问题:近几年我国居民活水平有了显著提高,我校有越来越多的教师购置了汽车,为了解决停车问题,在图书馆前面造了一个地下车库。车库面积有限,问题是如何利用车库高效地停车,即在保证安全的情况下,尽可能多地停车。为简单起见,我们假设该车库是一个100*100的正方形,见下图:

教师的车都是标准的轿车2x3米,车的最小转弯半径为4米,试设计一个最佳停车方案(只考虑平面)。