目录

  • 1 第一章 概述
    • 1.1 第一节 桥梁在交通建设中的地位和国内外桥梁的发展状况
    • 1.2 第二节 桥梁的组成和分类
    • 1.3 第三节 国内外典型桥梁垮塌事故
    • 1.4 第四节 桥梁运营管理及检测与加固技术现状
  • 2 第二章 桥梁结构病害分析
    • 2.1 第一节 空心板梁桥的结构特点与病害
    • 2.2 第二节 简支T梁桥的结构特点与病害
    • 2.3 第三节 预应力混凝土连续箱梁桥的结构特点与病害
    • 2.4 第四节 双曲拱桥的结构特点与病害
    • 2.5 第五节 钢筋混凝土桁架拱桥的结构特点与病害
    • 2.6 第六节 钢架拱桥的结构特点与病害
    • 2.7 第七节 斜拉桥的结构特点与病害
    • 2.8 第八节 悬索桥的结构特点与病害
    • 2.9 第九节 下部结构特点与病害
  • 3 第三章 桥梁检测设备与传感器
    • 3.1 第一节 位移、裂缝及线形测量设备
    • 3.2 第二节 应变测量原理及应变计
    • 3.3 第三节 应变测量衍生传感器
    • 3.4 第四节 测震传感器及数据采集分析设备
  • 4 第五章 梁桥的一般特点及分类
    • 4.1 第一节 钢筋混凝土梁桥和预应力混凝土梁桥的一般特点
    • 4.2 第二节 梁式桥的主要类型及其适用条件
    • 4.3 第三节 梁式桥的支座
  • 5 第六章 板桥的构造
    • 5.1 第一节 板桥的类型及特点
    • 5.2 第二节 简支板桥的构造
    • 5.3 第三节 斜板桥的受力特点与构造
  • 6 第七章 装配式简支梁桥的构造
    • 6.1 第一节 装配式简支梁桥的类型与特点
    • 6.2 第二节 装配式钢筋混凝土简支梁桥构造布置
    • 6.3 第三节 装配式预应力混凝土简支梁桥
    • 6.4 第四节 组合梁桥
  • 7 第八章 混凝土简支梁桥的施工
    • 7.1 第一节 施工准备工作
    • 7.2 第二节 桥位施工测量
    • 7.3 第三节 钢筋混凝土简支梁桥的施工工艺
    • 7.4 第四节 预应力简支梁桥的施工工艺
  • 8 第九章 超静定混凝土梁桥的构造设计要点
    • 8.1 第一节 钢筋混凝土悬臂梁桥构造和设计要点
    • 8.2 第二节 连续梁桥的构造与设计要点
    • 8.3 第三节 混凝土刚架桥构造特点
    • 8.4 第四节 预应力混凝土斜拉桥
  • 9 第十章 超静定混凝土梁桥的施工
    • 9.1 第一节 悬臂施工方法
    • 9.2 第二节 其他施工方法介绍
  • 10 第十一章 拱桥的构造
    • 10.1 第一节 拱桥的受力特点及适用范围
    • 10.2 第二节 拱桥的组成和主要类型
    • 10.3 第三节 主拱圈的构造
    • 10.4 第四节 其他类型拱桥的构造要点
    • 10.5 第五节 拱上建筑的构造
  • 11 第十二章 拱桥的设计要点
    • 11.1 第一节 拱桥的总体设计
    • 11.2 第二节 拱轴线型选择和拱上建筑物的布置
    • 11.3 第三节 拱桥主要尺寸的拟定
  • 12 第十三章 圬工和钢筋混凝土拱桥施工
    • 12.1 第一节 拱桥的有支架施工
    • 12.2 第二节 拱桥的无支架施工
  • 13 第十四章 桥梁墩台的构造
    • 13.1 第一节 概述
    • 13.2 第二节 桥墩构造
    • 13.3 第三节 桥台的构造
  • 14 第十五章 涵洞的构造与施工
    • 14.1 第一节 涵洞的分类
    • 14.2 第二节 洞身和洞口构造
    • 14.3 第三节 涵洞测设
  • 15 第十六章 涵洞施工技术
    • 15.1 第一节 施工准备工作和施工放样
    • 15.2 第二节 各种类型涵洞施工技术
    • 15.3 第三节 涵洞附属工程施工
  • 16 第十七章 课程视频资料
    • 16.1 第一节 大桥施工视频-郭发忠主编
    • 16.2 第二节 顶推视频
    • 16.3 第三节 钢筋视频
    • 16.4 第四节 涵洞视频
    • 16.5 第五节 混凝土及其它材料视频
    • 16.6 第六节 梁桥有支架就地浇筑
    • 16.7 第七节 模板、支架、设备视频
    • 16.8 第八节 浅基础 明挖扩大 基础开挖、墩台视频
    • 16.9 第九节 桥梁垮塌视频
    • 16.10 第十节 伸缩缝、支座视频
    • 16.11 第十一节 视频
    • 16.12 第十二节 苏通大桥视频
    • 16.13 第十三节 悬臂法视频
    • 16.14 第十四节 移动模架(造桥机)视频
    • 16.15 第十五节 预应力张拉视频
    • 16.16 第十六节 预制、安装(预制装配式)
    • 16.17 第十七节 转体视频
    • 16.18 第十八节 桩基础、连续墙视频
    • 16.19 第十九节 装配式拼装 缆索吊装视频
  • 17 第十八章 教学PPT
    • 17.1 第一节 11943-桥梁上部施工技术(第二版)-周传林
    • 17.2 第二节 12206-桥梁下部施工技术(第二版)-张辉
    • 17.3 第三节 桥涵工程-郭发忠主编
      • 17.3.1 第一章   总 论  ppt
      • 17.3.2 第二章  梁式桥设计 ppt
      • 17.3.3 第三章   拱桥设计  ppt
      • 17.3.4 第四章   桥梁墩台  ppt
      • 17.3.5 第五章   涵 洞  ppt
      • 17.3.6 第六章    悬索桥及斜拉桥  ppt
      • 17.3.7 第七章  桥涵施工  ppt
第一节 桥梁在交通建设中的地位和国内外桥梁的发展状况

一、桥梁在交通建设中的地位

桥:在公路、铁路、城市和农村道路以及水利建设中,为跨越各种障碍(如江河、沟谷或其他路线等),而修建的构造物,我们称为桥梁(或涵洞)。

 桥梁既是交通线上重要的工程实体,又是一种空间艺术。建立四通八达的现代化交通网,大力发展交通运输事业,对于发展国民经济,加强全国各族人民的团结,促进文化交流和巩固国防等方面,都具有非常重要的作用。桥涵是交通线中的重要组成部分,而且往往是保证全线早日通车的关键。在经济上,桥梁和涵洞的造价一般说来平均占公路总造价的1020%。在国防上,桥梁是交通运输的咽喉,在需要高度快速、机动的现代战争中,它具有非常重要的地位。此外,为了保证已有公路的正常运营,桥梁的养护与维修工作也十分重要。

纵观世界各国的大城市,常以工程雄伟的大桥作为城市的标志与骄傲。因而桥梁建筑已不单纯作为交通线上重要的工程实体,而且常作为一种空间艺术结构物存在于社会之中。

二、我国桥梁的成就

 我国的桥梁在上部结构、基础工程、设计水平、研究水平等领域已经有了相当大的成就,已属居世界领先水平。

1)上部结构 :主跨超过200m的大型桥梁就有100多座,分布情况如下表:

                                                           

 

桥型

 
 

建成数量

 
 

最大跨径

 
 

桥名

 
 

世界排名

 
 

建成年份

 
 

梁桥

 
 

10

 
 

270m

 
 

虎门大桥

 
 

3

 
 

1996

 
 

拱桥

 
 

9

 
 

420m

 
 

万县长江大桥

 
 

1

 
 

1997

 
 

斜拉桥

 
 

42

 
 

1088m

 
 

苏通长江大桥

 
 

1

 
 

在建

 
 

悬索桥

 
 

18

 
 

1650m

 
 

舟山西堠门大桥

 
 

2

 
 

在建

 

2)基础工程

我国在深水急流中修建了不少桥梁,已积累了极为可贵的深水基础工程的设计和施工经验。五十年代,我国修建武汉长江大桥时,在世界上首次采用了大型管柱基础。随后,这种先进深水基础型式得到了推广和发展,大型管柱的直径从1.55m发展到5.8m,最大埋置深度达47.5m。在沉井施工方面,由于成功地采用了先进的触变泥浆套下沉技术,大幅度地减小了基础圬工数量(据某大桥的实践,减小达一半),并使下沉速度加快311倍。在中、小跨径公路桥建设中,我国还广泛采用和推广了就地成孔的钻孔灌注桩基础。北镇黄河公路桥成功地采用这种基础施工,钻孔深度达104m。为了排除钻孔坍孔的危险,又发展了套管法施工桩基础。在大跨桥梁中,除了采用大型管柱钻孔桩基础外,还有管柱桩与沉井组合基础,常用于深水桥墩。在大型基础施工中,还开创使用双壁钢围堰与钻孔灌注桩的基础。随着桥梁向大跨、轻型、高强、整体方向的发展,桥梁下部结构形式出现日新月异的变化。我国深水桥墩设计与施工水平,虽已处于世界前列,但我国江河纵横、海岸线很长,沿海有开发价值的岛屿众多,规划中的大桥甚至要修建70100米水深的基础工程。这将是桥梁工程与近海工程结合的发展时代。

3)设计水平

目前桥梁设计理论已进展到极限状态设计方法,正在向可靠度理论方向发展。对中、小跨常用桥型广泛编制了标准设计图纸,为加速我国桥梁建设作出了巨大贡献。在桥梁设计中,空间分析、结构复杂的次内力计算、稳定、振动与地震响应等方面进行了大量研究,并取得了有实际价值的成果。桥梁静、动力模型试验、野外测试、风洞试验的研究,又为我国发展长大桥梁提供了科学依据。

三、外国桥梁的成就:

1)桥梁建设规模

悬索桥:世界最大的悬索桥---日本的明石海峡大桥,主跨1991m

斜拉桥:世界最大的斜拉桥---日本的多多罗桥,主跨890m

混凝土拱桥:世界最大的混凝土拱桥---中国的万县长江大桥,主跨420m

预应力混凝土桥:世界最大的预应力混凝土桥---挪威的斯托尔马桥,主跨301m

2)高强轻质材料的应用

桥梁建筑材料在17世纪以前,主要是石与木料,虽然中国在11世纪就出现瓦,公元前5世纪至三世纪就出现砖,人类第一次创造人工材料推动了房屋等工程的发展,但桥梁应用甚少。18世纪末,炼铁技术发展,开始应用于桥梁,1779年首次建成了铸铁拱桥(Coalbookrack桥,主跨30m)。留世于今的是著名法国巴黎塞纳河上的亚历山大三世铸铁拱桥(主跨107.5m,1899)19世纪有了锻铁,19世纪中叶出现了现代建筑钢材和钢丝,这是人工建筑材料又一次突破。20世纪,建筑钢材从普通钢发展到高强合金钢材、全气候钢,结构的连接从铆接、栓接、发展到焊接。结构高强轻型化,钢管、钢箱梁断面型式的应用,制造工艺自动化、工厂化、施工技术机械化,从而创造出千姿百态的现代钢桥。本世纪钢桥的发展主要反应在悬索桥与斜拉桥的建设。悬索桥从本世纪初的1000m(纽约华盛顿,主跨1067m1931年建成)至本世纪末突破至1991m。其标志性建筑为1937年建成的美国金门大桥(主跨988m,悬索桥,世界第一次创用扁箱流线型的加劲梁,改善了结构空气动力稳定性),1997年建成的中国香港特区青马大桥(主跨1377m,世界上跨径最大的现代化公铁两用桥)以及1998年建成的日本明石海峡大桥(主跨1991m,并在施工期间经受了1995年日本阪神大地震)

3)预应力技术的应用

20世纪建桥历史中最突出的成就是预应力混凝土技术的广泛应用,粗略估计,当今世界上70%以上的现代化桥梁都采用预应力混凝土新技术。由于高强钢丝或钢绞线的防护愈来愈成熟可靠,预应力拉索技术不但应用于桥梁结构。而且渗透到各类结构中去,创造出各种索结构与索膜结构。从19世纪20年代制成波特兰水泥,经过一个世纪,出现了预应力混凝土。由于混凝土抗裂性能的提高使混凝土梁桥跨越能力大大提高。特别在20世纪50年代后,创造了混凝土桥梁的悬臂施工方法,由此发展了梁式桥、拱式桥的新结构型式。在六十年代预应力混凝土首次被应用于斜拉桥,即委内瑞拉的马拉开波桥。从此,预应力混凝土桥梁从世纪初跨越30米左右跃进到世纪末跨越500米左右(斯卡圣德脱Skarnsumdet桥)。此外,钢筋混凝土和预应力混凝土还大量应用于其它土木工程。因而,20世纪是钢筋混凝土与预应力混凝土桥梁占主导地位的发展时期,法国、德国工程师们做出了卓越贡献。

4)计算机技术的应用

20世纪因电子计算机出现,有了高速数值运算方法,使结构和力学理论注入新的生命力,使各类力学问题都可迎刃而解。不但在结构线性、非线性的空间分析、稳定分析、动力分析、风与地震响应分析有深入的发展,而且随着其它工业发展,科学试验手段更趋先进,特别是对结构防灾(大风、大地震)和科学试验方法的发展(风洞、地震模拟振动台),使人类能够建造更高的塔楼和更大跨的桥梁。

5)洲际连络桥

建设海峡工程沟通全球交通,世纪初就是桥梁界的梦想。早在本世纪初,第一个海峡工程是美国的旧金山奥克莱海湾(San Francisco Oakland Bay)大桥,长6.8km,建成于1936年。发展到本世纪末的二十年中,联接日本的本州四国的三条联络线(海峡工程)将陆续建成,如1988年建成的兜岛-板出线,9.9km1998年建成的明石海峡大桥,3.91km1999年建成的今治-尾道线,长60km。连接丹麦岛间的大带海峡( Great Belt Strait)桥,长17.5km,建成于1988年。