目录

  • 1 稳恒磁场
    • 1.1 磁场和磁感应强度
      • 1.1.1 磁场
      • 1.1.2 磁感应强度(一)
      • 1.1.3 磁感应强度(二)
      • 1.1.4 磁感应强度(三)
    • 1.2 毕奥萨伐定律
      • 1.2.1 毕奥萨伐定律
      • 1.2.2 毕奥萨伐定律应用(一)
      • 1.2.3 毕奥萨伐定律应用(二)
      • 1.2.4 毕奥萨伐定律应用(三)
    • 1.3 磁高斯定理和安培环路定理
      • 1.3.1 磁场的高斯定理
      • 1.3.2 安培环路定理
      • 1.3.3 安培环路定理的应用(一)
      • 1.3.4 安培环路定理的应用(二)
    • 1.4 磁场对运动电荷的作用
      • 1.4.1 磁场对载流导体的作用(一)
      • 1.4.2 磁场对载流导体的作用(二)
      • 1.4.3 磁矩
      • 1.4.4 安培力的功
      • 1.4.5 霍尔效应
  • 2 磁介质
    • 2.1 顺磁性和抗磁性
    • 2.2 磁化强度和磁化电流
      • 2.2.1 磁介质的磁化强度
      • 2.2.2 磁化电流(一)
      • 2.2.3 磁化电流(二)
      • 2.2.4 磁化电流(三)
    • 2.3 介质中的磁场和磁场强度
      • 2.3.1 介质中磁场的高斯定理
      • 2.3.2 介质中磁场的安培环路定理
      • 2.3.3 磁介质的磁化率和磁导率
    • 2.4 铁磁质
    • 2.5 电场和磁场的相对性
  • 3 变化的电磁场
    • 3.1 电磁感应定律
      • 3.1.1 电磁感应现象
      • 3.1.2 法拉第电磁感应定理和楞次定律
      • 3.1.3 电磁感应的应用
    • 3.2 动生电动势
      • 3.2.1 动生电动势
      • 3.2.2 动生电动势的应用
    • 3.3 感生电动势 感应电场
      • 3.3.1 感生电动势
      • 3.3.2 感生电动势的性质
      • 3.3.3 感生电动势的计算(一)
      • 3.3.4 感生电动势的计算(二)
      • 3.3.5 感生电动势的应用
    • 3.4 自感和互感
      • 3.4.1 互感现象
      • 3.4.2 自感现象(一)
      • 3.4.3 自感现象(二)
    • 3.5 电容和电感电路中的暂态电流
      • 3.5.1 RL电路
      • 3.5.2 RC电路
      • 3.5.3 LC电路
      • 3.5.4 LRC电路
    • 3.6 磁场能量
      • 3.6.1 自感磁能
      • 3.6.2 互感磁能
    • 3.7 位移电流
      • 3.7.1 位移电流
      • 3.7.2 全电流
      • 3.7.3 全电流定律
  • 4 电磁波
    • 4.1 电磁波的性质
      • 4.1.1 光速
      • 4.1.2 横波性
    • 4.2 电磁波的能量和动量
      • 4.2.1 能流密度
      • 4.2.2 动量、辐射、压强
    • 4.3 电磁波谱
  • 5 光的偏振
    • 5.1 原子发光
      • 5.1.1 原子发光模型
      • 5.1.2 光波列的频谱宽度
    • 5.2 自然光和偏振光
    • 5.3 偏振片 马吕斯定律
      • 5.3.1 偏振片
      • 5.3.2 马吕斯定律
    • 5.4 反射和折射时光的偏振
      • 5.4.1 布儒斯特定律
      • 5.4.2 偏振片的应用
    • 5.5 双折射现象
      • 5.5.1 双折射现象
      • 5.5.2 寻常光和非寻常光
      • 5.5.3 晶体的主折射率正晶体、负晶体
      • 5.5.4 用惠更斯作图法说明双折射现象(一)
      • 5.5.5 用惠更斯作图法说明双折射现象(二)
    • 5.6 光振动的叠加 波片
      • 5.6.1 玻片(一)
      • 5.6.2 玻片(二)
      • 5.6.3 圆和椭圆偏振光的检偏
    • 5.7 人工双折射旋光
  • 6 光的干涉和衍射
    • 6.1 光波的相干叠加
    • 6.2 双缝干涉
    • 6.3 薄膜干涉
      • 6.3.1 薄膜干涉(一)
      • 6.3.2 薄膜干涉(二)
      • 6.3.3 相干条件
    • 6.4 薄膜的等倾干涉
      • 6.4.1 等倾干涉(一)
      • 6.4.2 等倾干涉(二)
      • 6.4.3 增透膜增反膜
    • 6.5 薄膜的等厚干涉
      • 6.5.1 劈尖干涉(一)
      • 6.5.2 劈尖干涉(二)
      • 6.5.3 牛顿环
    • 6.6 偏振光的干涉
      • 6.6.1 偏振光的干涉(一)
      • 6.6.2 偏振光的干涉(二)
    • 6.7 光栅干涉
      • 6.7.1 光的衍射
      • 6.7.2 惠更斯夫琅禾费衍射
      • 6.7.3 单缝夫琅禾费衍射(一)
      • 6.7.4 单缝夫琅禾费衍射(二)
      • 6.7.5 单缝夫琅禾费衍射(三)
      • 6.7.6 双缝夫琅禾费衍射(一)
      • 6.7.7 双缝夫琅禾费衍射(二)
    • 6.8 夫琅禾费衍射
      • 6.8.1 光栅衍射(一)
      • 6.8.2 光栅衍射(二)
      • 6.8.3 光栅衍射(三)
      • 6.8.4 光栅分辨本领
    • 6.9 夫琅禾费圆孔衍射
  • 7 量子光学基础
    • 7.1 热辐射
    • 7.2 普朗克的能量子假说
    • 7.3 光电效应和康普顿散射
    • 7.4 氢原子理光谱 玻尔理论
  • 8 量子力学基础
    • 8.1 德布罗意物质波
      • 8.1.1 德布罗意物质波假设
      • 8.1.2 德布罗意波的实验验证
    • 8.2 波函数
      • 8.2.1 波函数的统计解释
      • 8.2.2 波粒二象性
      • 8.2.3 态叠加原理
    • 8.3 不确定性关系
      • 8.3.1 位置和动量的不确定关系
      • 8.3.2 不确定关系与粒子的零点能
      • 8.3.3 能量和时间的不确定关系
    • 8.4 薛定谔方程
      • 8.4.1 薛定谔方程的建立
      • 8.4.2 定态薛定谔方程
    • 8.5 力学量算符的本征值问题
    • 8.6 薛定谔方程的应用
      • 8.6.1 一维无限深势阱(一)
      • 8.6.2 一维无限深势阱(二)
      • 8.6.3 一维谐振子
      • 8.6.4 一维散射
      • 8.6.5 扫描隧穿显微镜
    • 8.7 氢原子量子理论
      • 8.7.1 氢原子的薛定谔方程
      • 8.7.2 氢原子的量子数、能量和角动量
      • 8.7.3 塞曼效应
      • 8.7.4 氢原子的径向波函数
      • 8.7.5 氢原子的角向波函数
    • 8.8 电子自旋 泡利不相容原理
      • 8.8.1 电子自旋
      • 8.8.2 泡利不相容原理
  • 9 阅读
    • 9.1 阅读
普朗克的能量子假说
  • 1 视频
  • 2 章节测验



马克斯·普朗克(Max Planck,1858年4月23日-1947年10月4日),出生于德国荷尔施泰因,是德国著名的物理学家和量子力学的重要创始人。

且和爱因斯坦并称为二十世纪最重要的两大物理学家。他因发现能量量子化而对物理学的又一次飞跃做出了重要贡献,并在1918年荣获诺贝尔物理学奖。

1874年,普朗克进入慕尼黑大学攻读数学专业,后改读物理学专业。1877年转入柏林大学,曾聆听亥姆霍兹和基尔霍夫教授的讲课,1879年获得博士学位。1930年至1937年任德国威廉皇家学会的会长,该学会后为纪念普朗克而改名为马克斯·普朗克学会。

从博士论文开始,普朗克一直关注并研究热力学第二定律,发表诸多论文。大约1894年起,开始研究黑体辐射问题,发现普朗克辐射定律,并在论证过程中提出能量子概念和常数h(后称为普朗克常数),成为此后微观物理学中最基本的概念和极为重要的普适常量。1900年12月14日,普朗克在德国物理学会上报告这一结果,成为量子论诞生和新物理学革命宣告开始的伟大时刻。由于这一发现,普朗克获得了1918年诺贝尔物理学奖。


普朗克最大贡献是在1900年提出了能量量子化,其主要内容:黑体是由以不同频率作简谐振动的振子组成的,其中电磁波的吸收和发射不是连续的,而是以一种最小的能量单位ε=hν,为最基本单位而变化着的,理论计算结果才能跟实验事实相符,这样的一份能量ε,叫作能量子。其中v是辐射电磁波的频率,h=6.62559*10^-34Js,即普朗克常数。也就是说,振子的每一个可能的状态以及各个可能状态之间的能量差必定是hv的整数倍。

受他的启发,爱因斯坦于1905年提出,在空间传播的光也不是连续的,而是一份一份的,每一份叫一个光量子,简称光子,光子的能量E跟跟光的频率v成正比,即E=hv。这个学说以后就叫光量子假说。光子说还认为每一个光子的能量只决定于光子的频率,例如蓝光的频率比红光高,所以蓝光的光子的能量比红光子的能量大,同样颜色的光,强弱的不同则反映了单位时间内射到单位面积的光子数的多少。

普朗克黑体辐射定律 :大约是在1894年,普朗克开始把心力全部放在研究黑体辐射的问题上,他曾经委托过电力公司制造能消耗最少能量,但能产生最多光能的灯泡,这一问题也曾在1859年被基尔霍夫所提出:黑体在热力学平衡下的电磁辐射功率与辐射频率和黑体温度的关系。帝国物理技术学院(Physikalisch-Technischer Reichsanstalt)对这个问题进行了实验研究,但是经典物理学的瑞利-金斯定律无法解释高频率下的测量结果,但这定律却也创造了日后的紫外灾难,威廉·维恩给出了维恩位移定律,可以正确反映高频率下的结果,但却又无法符合低频率下的结果。这些定律之所以能发起有一小部分是普朗克的贡献,但大多数的教科书却都没有提到他。 普朗克在1899年就率先提出解决此问题的方法,叫做“基础无序原理”(principle of elementary disorder),并把瑞利-金斯定律和维恩位移定律这两条定律使用一种熵列式进行内插,由此发现了普朗克辐射定律,可以很好地描述测量结果,不久后,人们发现他的这项新理论是没有实验证据的,这也让普朗克他在当时感到稍稍的无奈。可是他并没有因此而气馁,反而修正了自己的方式,最后成功的推衍出著名的第一版普朗克黑体辐射定律,此定律是在描述由实验观察来的黑体辐射光谱呈现良好的状态,这一定律于1900年10月19日在德国物理学会上首次提出。也因为普朗克黑体辐射定律是第一个不包括能源量化以及统计力学的推论,因为他本人不喜欢这个理论。