目录

  • 1 稳恒磁场
    • 1.1 磁场和磁感应强度
      • 1.1.1 磁场
      • 1.1.2 磁感应强度(一)
      • 1.1.3 磁感应强度(二)
      • 1.1.4 磁感应强度(三)
    • 1.2 毕奥萨伐定律
      • 1.2.1 毕奥萨伐定律
      • 1.2.2 毕奥萨伐定律应用(一)
      • 1.2.3 毕奥萨伐定律应用(二)
      • 1.2.4 毕奥萨伐定律应用(三)
    • 1.3 磁高斯定理和安培环路定理
      • 1.3.1 磁场的高斯定理
      • 1.3.2 安培环路定理
      • 1.3.3 安培环路定理的应用(一)
      • 1.3.4 安培环路定理的应用(二)
    • 1.4 磁场对运动电荷的作用
      • 1.4.1 磁场对载流导体的作用(一)
      • 1.4.2 磁场对载流导体的作用(二)
      • 1.4.3 磁矩
      • 1.4.4 安培力的功
      • 1.4.5 霍尔效应
  • 2 磁介质
    • 2.1 顺磁性和抗磁性
    • 2.2 磁化强度和磁化电流
      • 2.2.1 磁介质的磁化强度
      • 2.2.2 磁化电流(一)
      • 2.2.3 磁化电流(二)
      • 2.2.4 磁化电流(三)
    • 2.3 介质中的磁场和磁场强度
      • 2.3.1 介质中磁场的高斯定理
      • 2.3.2 介质中磁场的安培环路定理
      • 2.3.3 磁介质的磁化率和磁导率
    • 2.4 铁磁质
    • 2.5 电场和磁场的相对性
  • 3 变化的电磁场
    • 3.1 电磁感应定律
      • 3.1.1 电磁感应现象
      • 3.1.2 法拉第电磁感应定理和楞次定律
      • 3.1.3 电磁感应的应用
    • 3.2 动生电动势
      • 3.2.1 动生电动势
      • 3.2.2 动生电动势的应用
    • 3.3 感生电动势 感应电场
      • 3.3.1 感生电动势
      • 3.3.2 感生电动势的性质
      • 3.3.3 感生电动势的计算(一)
      • 3.3.4 感生电动势的计算(二)
      • 3.3.5 感生电动势的应用
    • 3.4 自感和互感
      • 3.4.1 互感现象
      • 3.4.2 自感现象(一)
      • 3.4.3 自感现象(二)
    • 3.5 电容和电感电路中的暂态电流
      • 3.5.1 RL电路
      • 3.5.2 RC电路
      • 3.5.3 LC电路
      • 3.5.4 LRC电路
    • 3.6 磁场能量
      • 3.6.1 自感磁能
      • 3.6.2 互感磁能
    • 3.7 位移电流
      • 3.7.1 位移电流
      • 3.7.2 全电流
      • 3.7.3 全电流定律
  • 4 电磁波
    • 4.1 电磁波的性质
      • 4.1.1 光速
      • 4.1.2 横波性
    • 4.2 电磁波的能量和动量
      • 4.2.1 能流密度
      • 4.2.2 动量、辐射、压强
    • 4.3 电磁波谱
  • 5 光的偏振
    • 5.1 原子发光
      • 5.1.1 原子发光模型
      • 5.1.2 光波列的频谱宽度
    • 5.2 自然光和偏振光
    • 5.3 偏振片 马吕斯定律
      • 5.3.1 偏振片
      • 5.3.2 马吕斯定律
    • 5.4 反射和折射时光的偏振
      • 5.4.1 布儒斯特定律
      • 5.4.2 偏振片的应用
    • 5.5 双折射现象
      • 5.5.1 双折射现象
      • 5.5.2 寻常光和非寻常光
      • 5.5.3 晶体的主折射率正晶体、负晶体
      • 5.5.4 用惠更斯作图法说明双折射现象(一)
      • 5.5.5 用惠更斯作图法说明双折射现象(二)
    • 5.6 光振动的叠加 波片
      • 5.6.1 玻片(一)
      • 5.6.2 玻片(二)
      • 5.6.3 圆和椭圆偏振光的检偏
    • 5.7 人工双折射旋光
  • 6 光的干涉和衍射
    • 6.1 光波的相干叠加
    • 6.2 双缝干涉
    • 6.3 薄膜干涉
      • 6.3.1 薄膜干涉(一)
      • 6.3.2 薄膜干涉(二)
      • 6.3.3 相干条件
    • 6.4 薄膜的等倾干涉
      • 6.4.1 等倾干涉(一)
      • 6.4.2 等倾干涉(二)
      • 6.4.3 增透膜增反膜
    • 6.5 薄膜的等厚干涉
      • 6.5.1 劈尖干涉(一)
      • 6.5.2 劈尖干涉(二)
      • 6.5.3 牛顿环
    • 6.6 偏振光的干涉
      • 6.6.1 偏振光的干涉(一)
      • 6.6.2 偏振光的干涉(二)
    • 6.7 光栅干涉
      • 6.7.1 光的衍射
      • 6.7.2 惠更斯夫琅禾费衍射
      • 6.7.3 单缝夫琅禾费衍射(一)
      • 6.7.4 单缝夫琅禾费衍射(二)
      • 6.7.5 单缝夫琅禾费衍射(三)
      • 6.7.6 双缝夫琅禾费衍射(一)
      • 6.7.7 双缝夫琅禾费衍射(二)
    • 6.8 夫琅禾费衍射
      • 6.8.1 光栅衍射(一)
      • 6.8.2 光栅衍射(二)
      • 6.8.3 光栅衍射(三)
      • 6.8.4 光栅分辨本领
    • 6.9 夫琅禾费圆孔衍射
  • 7 量子光学基础
    • 7.1 热辐射
    • 7.2 普朗克的能量子假说
    • 7.3 光电效应和康普顿散射
    • 7.4 氢原子理光谱 玻尔理论
  • 8 量子力学基础
    • 8.1 德布罗意物质波
      • 8.1.1 德布罗意物质波假设
      • 8.1.2 德布罗意波的实验验证
    • 8.2 波函数
      • 8.2.1 波函数的统计解释
      • 8.2.2 波粒二象性
      • 8.2.3 态叠加原理
    • 8.3 不确定性关系
      • 8.3.1 位置和动量的不确定关系
      • 8.3.2 不确定关系与粒子的零点能
      • 8.3.3 能量和时间的不确定关系
    • 8.4 薛定谔方程
      • 8.4.1 薛定谔方程的建立
      • 8.4.2 定态薛定谔方程
    • 8.5 力学量算符的本征值问题
    • 8.6 薛定谔方程的应用
      • 8.6.1 一维无限深势阱(一)
      • 8.6.2 一维无限深势阱(二)
      • 8.6.3 一维谐振子
      • 8.6.4 一维散射
      • 8.6.5 扫描隧穿显微镜
    • 8.7 氢原子量子理论
      • 8.7.1 氢原子的薛定谔方程
      • 8.7.2 氢原子的量子数、能量和角动量
      • 8.7.3 塞曼效应
      • 8.7.4 氢原子的径向波函数
      • 8.7.5 氢原子的角向波函数
    • 8.8 电子自旋 泡利不相容原理
      • 8.8.1 电子自旋
      • 8.8.2 泡利不相容原理
  • 9 阅读
    • 9.1 阅读
电磁波的性质


电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

电磁波首先由詹姆斯·麦克斯韦于1865年预测出来,而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在。麦克斯韦推导出电磁波方程,一种波动方程,这清楚地显示出电场和磁场的波动本质。因为电磁波方程预测的电磁波速度与光速的测量值相等,麦克斯韦推论光波也是电磁波。


无线电

无线电广播与电视都是利用电磁波来进行的。在无线电广播中,人们先将声音信号转变为电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程而在电视中,除了要像无线广播中那样处理声音信号外,还要将图象的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。 

无线电广播利用的电磁波的频率很高,范围也非常大,而电视所利用的电磁波的频率则更高,范围也更大。

其他方面

此外,电磁波还应用于手机通讯、卫星信号、导航、遥控、定位、家电(微波炉、电磁炉)红外波、工业、医疗器械等方面。