目录

  • 1 稳恒磁场
    • 1.1 磁场和磁感应强度
      • 1.1.1 磁场
      • 1.1.2 磁感应强度(一)
      • 1.1.3 磁感应强度(二)
      • 1.1.4 磁感应强度(三)
    • 1.2 毕奥萨伐定律
      • 1.2.1 毕奥萨伐定律
      • 1.2.2 毕奥萨伐定律应用(一)
      • 1.2.3 毕奥萨伐定律应用(二)
      • 1.2.4 毕奥萨伐定律应用(三)
    • 1.3 磁高斯定理和安培环路定理
      • 1.3.1 磁场的高斯定理
      • 1.3.2 安培环路定理
      • 1.3.3 安培环路定理的应用(一)
      • 1.3.4 安培环路定理的应用(二)
    • 1.4 磁场对运动电荷的作用
      • 1.4.1 磁场对载流导体的作用(一)
      • 1.4.2 磁场对载流导体的作用(二)
      • 1.4.3 磁矩
      • 1.4.4 安培力的功
      • 1.4.5 霍尔效应
  • 2 磁介质
    • 2.1 顺磁性和抗磁性
    • 2.2 磁化强度和磁化电流
      • 2.2.1 磁介质的磁化强度
      • 2.2.2 磁化电流(一)
      • 2.2.3 磁化电流(二)
      • 2.2.4 磁化电流(三)
    • 2.3 介质中的磁场和磁场强度
      • 2.3.1 介质中磁场的高斯定理
      • 2.3.2 介质中磁场的安培环路定理
      • 2.3.3 磁介质的磁化率和磁导率
    • 2.4 铁磁质
    • 2.5 电场和磁场的相对性
  • 3 变化的电磁场
    • 3.1 电磁感应定律
      • 3.1.1 电磁感应现象
      • 3.1.2 法拉第电磁感应定理和楞次定律
      • 3.1.3 电磁感应的应用
    • 3.2 动生电动势
      • 3.2.1 动生电动势
      • 3.2.2 动生电动势的应用
    • 3.3 感生电动势 感应电场
      • 3.3.1 感生电动势
      • 3.3.2 感生电动势的性质
      • 3.3.3 感生电动势的计算(一)
      • 3.3.4 感生电动势的计算(二)
      • 3.3.5 感生电动势的应用
    • 3.4 自感和互感
      • 3.4.1 互感现象
      • 3.4.2 自感现象(一)
      • 3.4.3 自感现象(二)
    • 3.5 电容和电感电路中的暂态电流
      • 3.5.1 RL电路
      • 3.5.2 RC电路
      • 3.5.3 LC电路
      • 3.5.4 LRC电路
    • 3.6 磁场能量
      • 3.6.1 自感磁能
      • 3.6.2 互感磁能
    • 3.7 位移电流
      • 3.7.1 位移电流
      • 3.7.2 全电流
      • 3.7.3 全电流定律
  • 4 电磁波
    • 4.1 电磁波的性质
      • 4.1.1 光速
      • 4.1.2 横波性
    • 4.2 电磁波的能量和动量
      • 4.2.1 能流密度
      • 4.2.2 动量、辐射、压强
    • 4.3 电磁波谱
  • 5 光的偏振
    • 5.1 原子发光
      • 5.1.1 原子发光模型
      • 5.1.2 光波列的频谱宽度
    • 5.2 自然光和偏振光
    • 5.3 偏振片 马吕斯定律
      • 5.3.1 偏振片
      • 5.3.2 马吕斯定律
    • 5.4 反射和折射时光的偏振
      • 5.4.1 布儒斯特定律
      • 5.4.2 偏振片的应用
    • 5.5 双折射现象
      • 5.5.1 双折射现象
      • 5.5.2 寻常光和非寻常光
      • 5.5.3 晶体的主折射率正晶体、负晶体
      • 5.5.4 用惠更斯作图法说明双折射现象(一)
      • 5.5.5 用惠更斯作图法说明双折射现象(二)
    • 5.6 光振动的叠加 波片
      • 5.6.1 玻片(一)
      • 5.6.2 玻片(二)
      • 5.6.3 圆和椭圆偏振光的检偏
    • 5.7 人工双折射旋光
  • 6 光的干涉和衍射
    • 6.1 光波的相干叠加
    • 6.2 双缝干涉
    • 6.3 薄膜干涉
      • 6.3.1 薄膜干涉(一)
      • 6.3.2 薄膜干涉(二)
      • 6.3.3 相干条件
    • 6.4 薄膜的等倾干涉
      • 6.4.1 等倾干涉(一)
      • 6.4.2 等倾干涉(二)
      • 6.4.3 增透膜增反膜
    • 6.5 薄膜的等厚干涉
      • 6.5.1 劈尖干涉(一)
      • 6.5.2 劈尖干涉(二)
      • 6.5.3 牛顿环
    • 6.6 偏振光的干涉
      • 6.6.1 偏振光的干涉(一)
      • 6.6.2 偏振光的干涉(二)
    • 6.7 光栅干涉
      • 6.7.1 光的衍射
      • 6.7.2 惠更斯夫琅禾费衍射
      • 6.7.3 单缝夫琅禾费衍射(一)
      • 6.7.4 单缝夫琅禾费衍射(二)
      • 6.7.5 单缝夫琅禾费衍射(三)
      • 6.7.6 双缝夫琅禾费衍射(一)
      • 6.7.7 双缝夫琅禾费衍射(二)
    • 6.8 夫琅禾费衍射
      • 6.8.1 光栅衍射(一)
      • 6.8.2 光栅衍射(二)
      • 6.8.3 光栅衍射(三)
      • 6.8.4 光栅分辨本领
    • 6.9 夫琅禾费圆孔衍射
  • 7 量子光学基础
    • 7.1 热辐射
    • 7.2 普朗克的能量子假说
    • 7.3 光电效应和康普顿散射
    • 7.4 氢原子理光谱 玻尔理论
  • 8 量子力学基础
    • 8.1 德布罗意物质波
      • 8.1.1 德布罗意物质波假设
      • 8.1.2 德布罗意波的实验验证
    • 8.2 波函数
      • 8.2.1 波函数的统计解释
      • 8.2.2 波粒二象性
      • 8.2.3 态叠加原理
    • 8.3 不确定性关系
      • 8.3.1 位置和动量的不确定关系
      • 8.3.2 不确定关系与粒子的零点能
      • 8.3.3 能量和时间的不确定关系
    • 8.4 薛定谔方程
      • 8.4.1 薛定谔方程的建立
      • 8.4.2 定态薛定谔方程
    • 8.5 力学量算符的本征值问题
    • 8.6 薛定谔方程的应用
      • 8.6.1 一维无限深势阱(一)
      • 8.6.2 一维无限深势阱(二)
      • 8.6.3 一维谐振子
      • 8.6.4 一维散射
      • 8.6.5 扫描隧穿显微镜
    • 8.7 氢原子量子理论
      • 8.7.1 氢原子的薛定谔方程
      • 8.7.2 氢原子的量子数、能量和角动量
      • 8.7.3 塞曼效应
      • 8.7.4 氢原子的径向波函数
      • 8.7.5 氢原子的角向波函数
    • 8.8 电子自旋 泡利不相容原理
      • 8.8.1 电子自旋
      • 8.8.2 泡利不相容原理
  • 9 阅读
    • 9.1 阅读
顺磁性和抗磁性
  • 1 视频
  • 2 章节测验



典型的顺磁性气体是O2,常见的顺磁体有过渡金属的盐类、稀土金属的盐类及氧化物。温度高于磁转变温度时,序磁性(见铁磁性)物质也呈现为顺磁性,如室温情况下除钆(Gd)以外的稀土金属。 

金属如锂(Li)、钠(Na)等,这些顺磁性金属的磁化率与温度无关,可以用量子力学解释。


抗磁性是普遍存在的,它是所有物质在外磁场作用下毫不例外地具有的一种属性。外磁场穿过电子轨道时,引起的电磁感应使轨道电子加速。根据焦耳-楞次定律,由轨道电子的这种加速运动所引起的磁通,总是与外磁场变化相反,因而磁化率k总是负的。

按照经典理论,传导电子是不可能出现抗磁性的。因为外加磁场(由于洛伦兹力垂直于电子的运动方向)不会改变电子系统的自由能及其分布函数,因此磁化率为零。

在外磁场作用下形成的环形电流在金属的边界上反射,因而使金属体内的抗磁性磁矩为表面 “破折轨道”的反向磁矩抵消,不显示抗磁性。

抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。当受到外加磁场作用时,物质原子的电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率k便成为绝对值很小的负数。一般抗磁性物质的磁化率约为负百万分之一(-10-6)。

由于组成物质原子的原子核外电子环流的作用使其具有的磁特性。抗磁性是产生的磁性作用在与外加磁场相反方向产生屏蔽。如物质中存在不配对电子时,则出现顺磁性,而且可超过任何的抗磁性。屏蔽与去屏蔽取决于核相对任一感生磁场的方向,故称为各向异性效应。抗磁性各向异性是由π和δ电子云内的环流引起的。

只有纯抗磁性物质才能明显地被观测到抗磁性。例如,惰性气体元素和抗腐蚀金属元素(金、银、铜等等)都具有显著的抗磁性。当外磁场存在时,抗磁性才会表现出来。假设外磁场被撤除,则抗磁性也会随之消失。 

任何物体在磁场作用下,都会产生抗磁性效应。但因抗磁性很弱,若物体具有顺磁性或序磁性(见铁磁性)时,抗磁性就被掩盖了。因此,从原子结构来看,呈现抗磁性的物体是由具有满电子壳层结构的原子、离子或分子组成的,如惰性气体、食盐、水以及绝大多数有机化合物等。由于迈斯纳效应,超导体是理想的抗磁体(见超导电性)。 

抗磁磁化率与磁场和温度无关。但也有例外,如石墨、铋等。