目录

  • 1 绪论
    • 1.1 绪论
    • 1.2 PPT视频课件
  • 2 X射线物理学基础
    • 2.1 X射线的本质
    • 2.2 X射线的产生
    • 2.3 X射线谱
    • 2.4 X射线与物质相互作用
    • 2.5 X射线的防护
    • 2.6 PPT视频课件
  • 3 X射线在晶体中的衍射
    • 3.1 X射线衍射的概念
    • 3.2 X射线衍射的条件和方向
    • 3.3 PPT视频课件
  • 4 X射线衍射方法
    • 4.1 X射线衍射分析方法概述
    • 4.2 单晶X射线衍射方法
    • 4.3 粉末照相法
    • 4.4 X射线衍射仪法
    • 4.5 PPT视频课件
  • 5 X射线衍射法的用途
    • 5.1 X射线物相的定性和定量分析
    • 5.2 晶格常数测定
    • 5.3 纳米晶粒径的测定
    • 5.4 宏观应力测定
    • 5.5 PPT视频课件
  • 6 电子与物质的交互作用
    • 6.1 散射
    • 6.2 高能电子与样品物质交互作用产生的电子信息
    • 6.3 PPT视频课件
  • 7 透射电子显微分析
    • 7.1 透射电镜的结构及成像原理
    • 7.2 电子衍射
    • 7.3 透射电子显微分析样品制备
    • 7.4 薄晶体样品的衍衬成像原理
    • 7.5 PPT视频课件
  • 8 扫描电子显微分析
    • 8.1 扫描电镜工作原理、构造和性能
    • 8.2 扫描电镜在材料研究中的应用
    • 8.3 PPT视频课件
  • 9 电子探针X射线显微分析
    • 9.1 电子探针的结构
    • 9.2 X射线波长色散谱仪
    • 9.3 X射线能量色散谱仪
    • 9.4 波谱仪与能谱仪的比较
    • 9.5 电子探针的基本功能
    • 9.6 电子探针对试样的要求
    • 9.7 PPT视频课件
  • 10 扫描探针显微分析
    • 10.1 扫描探针显微镜的产生和历史
    • 10.2 扫描探针显微镜的基本原理
    • 10.3 扫描探针显微镜的应用
    • 10.4 PPT视频课件
  • 11 热分析技术
    • 11.1 概述
    • 11.2 热重法
    • 11.3 差热分析
    • 11.4 示差扫描量热法
    • 11.5 PPT视频课件
  • 12 红外光谱和激光拉曼光谱
    • 12.1 红外光谱的基本原理
    • 12.2 红外谱图的峰数、峰位与峰强
    • 12.3 红外光谱仪
    • 12.4 试样的处理和制备
    • 12.5 红外光谱在结构分析中的应用
    • 12.6 拉曼光谱
    • 12.7 红外和拉曼光谱的区别
    • 12.8 PPT视频课件
红外光谱仪


红外光谱仪


目前主要有两类红外光谱仪:色散型红外光谱仪和Fourier(傅立叶)变换红外光谱仪。

一、色散型红外光谱仪

          色散型红外光谱仪的组成部件与紫外-可见分光光度计相似,但对每一个部件的结构、所用的材料及性能与 紫外--可见分光光度计不同。它们的排列顺序也略有不同,红外光谱仪的样品是放在光源和单色器之间而紫外--可见分光光度计是放在单色器之后。

        色散型红外光谱仪原理示意图如下图所示。


 色散型红外光谱仪一般均采用双光束。将光源发射的红外光分成两束,一束通过试样,另一束通过参比,利用半圆扇形镜使试样光束和参比光束交替通过单色器,然后被检测器检测。当试样光束与参比光束强度相等时,检测器不产生交流信号;当试样有吸收,两光束强度不等时,检测器产生与光强差成正比的交流信号,从而获得吸收光谱。

1 . 光源

     红外光谱仪中所用的光源通常是一种惰性固体,用电加热使之发射高强度的连续红外辐射

    常用的是Nernst灯或硅碳棒Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。工作温度约为1700℃,在此高温下导电并发射红外线。但在室温下是非导体,因此,在工作之前要预热。它的特点是发射强度高,使用寿命长,稳定性较好。缺点是价格比硅碳棒贵,机械强度差,操作不如硅碳棒方便。硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃左右。

2 . 吸收池


  因玻璃、石英等材料不能透过红外光,红外吸收池要用 可透过红外光的NaCl、KBr、CsI、KRS-5(TlI  58%,TlBr42%)等材料制成窗片。用NaCl、KBr、CsI等材料制成的窗片需注意防潮。固体试样常与纯KBr混匀压片,然后直接进行测定。


3 . 单色器


  单色器由色散元件、准直镜和狭缝构成。


   色散元件常用复制的闪耀光栅。由于闪耀光栅存在次级光谱的干扰,因此,需要将光栅和用来分离次光谱的滤光器或前置棱镜结合起来使用。


4 . 检测器


          常用的红外检测器有高真空热电偶、热释电检测器和碲镉汞检测器


5.记录系统




色散型红外光谱仪的缺点:入射光经狭缝到达检测器的光强弱;响应时间长。


二、Fourier变换红外光谱仪FTIR)

   Fourier变换 红外光谱仪 没有色散元件,主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成

   核心部分为Michelson干涉仪,它将光源来的信号以干涉图的形式送往计算机进行Fourier变换的数学处理,最后将干涉图还原成光谱图。

    它与色散型红外光度计的主要区别在于干涉仪和电子计算机两部分。

 仪器中的Michelson干涉仪的作用是将光源发出的光分成两光束后,再以不同的光程差重新组合发生干涉现象。当两束光的光程差为l/2的偶数倍时,则落在检测器上的相干光相互叠加,产生明线,其相干光强度有极大值;相反,当两束光的光程差为l/2的奇数倍时,则落在检测器上的相干光相互抵消,产生暗线,相干光强度有极小值。


               
Fourier变换红外光谱仪的特点

(1)扫描速度极快


   Fourier变换仪器是在整扫描时间内同时测定所有频率的信息,一般只要1s左右即可。因此,它可用于测定不稳定物质的红外光谱。而色散型红外光谱仪,在任何一瞬间只能观测一个很窄的频率范围,一次完整扫描通常需要8、15、30s等。


(2)具有很高的分辨率


    通常Fourier变换 红外光谱仪分辨率达0.1~0.005 cm-1,而一般棱镜型的仪器分辨率在1000 cm-1处有3 cm-1 ,光栅型红外光谱仪分辨率也只有0.2cm-1

3)灵敏度高


     因Fourier变换 红外光谱仪 不用狭缝和单色器,反射镜面又大,故能量损失小,到达检测器的能量大,可检测10-8g数量级的样品。


     除此之外,还有光谱范围宽(1000~10 cm-1 );测量精度高,重复性可达0.1%;杂散光干扰小;样品不受因红外聚焦而产生的热效应的影响。