目录

  • 1 Basic Concepts of Electric Circuits
    • 1.1 Introduction
    • 1.2 Voltage and Current
    • 1.3 Power and Energy
  • 2 Basic Laws of Electric Circuit
    • 2.1 Ohm's Law
    • 2.2 Kirchhoff's Laws
    • 2.3 Series Resistors and Voltage Division
    • 2.4 Parallel Resistors and Current Division
    • 2.5 Summary
  • 3 Capacitors and Inductors
    • 3.1 Capacitors
    • 3.2 Inductors
    • 3.3 Summary
  • 4 Electronic System
    • 4.1 Introduction
    • 4.2 Electronic System Block Diagrams
    • 4.3 Information Processing Versus Power Electronics
    • 4.4 Analog Versus Digital Systems
    • 4.5 Conversion of Signals from Analog to Digital Form
    • 4.6 Relative Advantages of Analog and Digital Systems
  • 5 Operational Amplifiers
    • 5.1 Introduction
    • 5.2 Operational Amplifiers
    • 5.3 Ideal op-amp
    • 5.4 Inverting Amplifier
    • 5.5 Noninverting Amplifier
  • 6 Digital Logic Circuits
    • 6.1 Basic Concepts and Introduction
    • 6.2 Electrical Specifications for Logic Gates
  • 7 Transformer
    • 7.1 Introduction
    • 7.2 Construction of Transformer
    • 7.3 The Ideal Transformer
  • 8 Electrical Machines
    • 8.1 A Brief Overview
    • 8.2 Induction Machines
    • 8.3 Synchronous Machines
    • 8.4 Direct-Current Machines
  • 9 Automatic Control Systems
    • 9.1 Introduction
    • 9.2 Block Diagrams and Transfer Functions
    • 9.3 Open-Loop Control
    • 9.4 Closed-Loop Control: Feedback
    • 9.5 Objectives of a Control System
    • 9.6 Assignment
  • 10 Measurement
    • 10.1 Introduction
    • 10.2 Statistics
    • 10.3 Operating Characteristics
    • 10.4 Measurement Instruments
    • 10.5 Velocity Measurement
  • 11 Power Semiconductor Switches
    • 11.1 Introduction
    • 11.2 Thyristors
    • 11.3 Metal-Oxide-Semiconductor Field Effect Transistors
    • 11.4 Gate Turn-Off Thyristors
    • 11.5 Insulated Gate Bipolar Transistors
    • 11.6 Desired Characteristics in Controllable Switches
  • 12 Rectifiers and Inverters
    • 12.1 Introduction
    • 12.2 Basic Rectifier Concepts
    • 12.3 Practical Thyristor Converters
  • 13 Academic English
    • 13.1 Vocabulary
    • 13.2 Structure
    • 13.3 Common errors
Insulated Gate Bipolar Transistors

    The Insulated Gate Bipolar Transistor also called an IGBT for short, is something of a cross between a conventional Bipolar Junction Transistor, (BJT) and a Field Effect Transistor, (MOSFET) making it ideal as a semiconductor switching device.

The IGBT Transistor takes the best parts of these two types of common transistors, the high input impedance and high switching speeds of a MOSFET with the low saturation voltage of a bipolar transistor, and combines them together to produce another type of transistor switching device that is capable of handling large collector-emitter currents with virtually zero gate current drive.

typical insulated gate bipolar transistor

Typical IGBT

    The Insulated Gate Bipolar Transistor, (IGBT) combines the insulated gate (hence the first part of its name) technology of the MOSFET with the output performance characteristics of a conventional bipolar transistor, (hence the second part of its name).

     The result of this hybrid combination is that the “IGBT Transistor” has the output switching and conduction characteristics of a bipolar transistor but is voltage-controlled like a MOSFET.

     IGBTs are mainly used in power electronics applications, such as inverters, converters and power supplies, were the demands of the solid state switching device are not fully met by power bipolars and power MOSFETs. High-current and high-voltage bipolars are available, but their switching speeds are slow, while power MOSFETs may have higher switching speeds, but high-voltage and high-current devices are expensive and hard to achieve.

    The advantage gained by the insulated gate bipolar transistor device over a BJT or MOSFET is that it offers greater power gain than the standard bipolar type transistor combined with the higher voltage operation and lower input losses of the MOSFET. In effect it is an FET integrated with a bipolar transistor in a form of Darlington type configuration as shown.

Insulated Gate Bipolar Transistor

insulated gate bipolar transistor

We can see that the insulated gate bipolar transistor is a three terminal, transconductance device that combines an insulated gate N-channel MOSFET input with a PNP bipolar transistor output connected in a type of Darlington configuration.