目录

  • 1 Basic Concepts of Electric Circuits
    • 1.1 Introduction
    • 1.2 Voltage and Current
    • 1.3 Power and Energy
  • 2 Basic Laws of Electric Circuit
    • 2.1 Ohm's Law
    • 2.2 Kirchhoff's Laws
    • 2.3 Series Resistors and Voltage Division
    • 2.4 Parallel Resistors and Current Division
    • 2.5 Summary
  • 3 Capacitors and Inductors
    • 3.1 Capacitors
    • 3.2 Inductors
    • 3.3 Summary
  • 4 Electronic System
    • 4.1 Introduction
    • 4.2 Electronic System Block Diagrams
    • 4.3 Information Processing Versus Power Electronics
    • 4.4 Analog Versus Digital Systems
    • 4.5 Conversion of Signals from Analog to Digital Form
    • 4.6 Relative Advantages of Analog and Digital Systems
  • 5 Operational Amplifiers
    • 5.1 Introduction
    • 5.2 Operational Amplifiers
    • 5.3 Ideal op-amp
    • 5.4 Inverting Amplifier
    • 5.5 Noninverting Amplifier
  • 6 Digital Logic Circuits
    • 6.1 Basic Concepts and Introduction
    • 6.2 Electrical Specifications for Logic Gates
  • 7 Transformer
    • 7.1 Introduction
    • 7.2 Construction of Transformer
    • 7.3 The Ideal Transformer
  • 8 Electrical Machines
    • 8.1 A Brief Overview
    • 8.2 Induction Machines
    • 8.3 Synchronous Machines
    • 8.4 Direct-Current Machines
  • 9 Automatic Control Systems
    • 9.1 Introduction
    • 9.2 Block Diagrams and Transfer Functions
    • 9.3 Open-Loop Control
    • 9.4 Closed-Loop Control: Feedback
    • 9.5 Objectives of a Control System
    • 9.6 Assignment
  • 10 Measurement
    • 10.1 Introduction
    • 10.2 Statistics
    • 10.3 Operating Characteristics
    • 10.4 Measurement Instruments
    • 10.5 Velocity Measurement
  • 11 Power Semiconductor Switches
    • 11.1 Introduction
    • 11.2 Thyristors
    • 11.3 Metal-Oxide-Semiconductor Field Effect Transistors
    • 11.4 Gate Turn-Off Thyristors
    • 11.5 Insulated Gate Bipolar Transistors
    • 11.6 Desired Characteristics in Controllable Switches
  • 12 Rectifiers and Inverters
    • 12.1 Introduction
    • 12.2 Basic Rectifier Concepts
    • 12.3 Practical Thyristor Converters
  • 13 Academic English
    • 13.1 Vocabulary
    • 13.2 Structure
    • 13.3 Common errors
Capacitors
  • 1 How a c...
  • 2 How a c...
  • 3 讨论
  • 4 视频

How a Capacitor Is Made

The schematic symbol for a capacitor actually closely resembles how it’s made. A capacitor is created out of two metal plates and an insulating material called a dielectric. The metal plates are placed very close to each other, in parallel, but the dielectric sits between them to make sure they don’t touch.

Internal capacitor view

Your standard capacitor sandwich: two metal plates separated by an insulating dielectric.

The dielectric can be made out of all sorts of insulating materials: paper, glass, rubber, ceramic, plastic, or anything that will impede the flow of current.

The plates are made of a conductive material: aluminum, tantalum, silver, or other metals. They’re each connected to a terminal wire, which is what eventually connects to the rest of the circuit.

The capacitance of a capacitor – how many farads it has – depends on how it’s constructed. More capacitance requires a larger capacitor. Plates with more overlapping surface area provide more capacitance, while more distance between the plates means less capacitance. The material of the dielectric even has an effect on how many farads a cap has. The total capacitance of a capacitor can be calculated with the equation:

C=er*A/(4*pi*d)

Where εr is the dielectric’s relative permittivity (a constant value determined by the dielectric material), A is the amount of area the plates overlap each other, and d is the distance between the plates.