目录

  • 1 导论
    • 1.1 课程简介
    • 1.2 创新需要方法吗?
    • 1.3 创新方法的演化
  • 2 TRIZ法概述
    • 2.1 TRIZ法产生与发展
    • 2.2 阿奇舒勒的发现
    • 2.3 发明专利等级划分
    • 2.4 TRIZ体系结构
    • 2.5 TRIZ解决问题的流程
  • 3 技术系统进化趋势
    • 3.1 技术系统及进化趋势
    • 3.2 S曲线法则
    • 3.3 技术系统进化法则(1-4)
    • 3.4 技术系统进化法则(5-8)
  • 4 TRIZ创新思维与方法
    • 4.1 TRIZ“思维桥”
    • 4.2 最终理想解
    • 4.3 资源分析
    • 4.4 九屏幕法
    • 4.5 STC法
    • 4.6 金鱼法
    • 4.7 聪明小人法
  • 5 现代TRIZ理论
    • 5.1 现代TRIZ理论体系的形成
    • 5.2 现代TRIZ理论应用三大步骤
    • 5.3 现代TRIZ理论解决问题所用到的工具
  • 6 功能分析
    • 6.1 什么是功能分析?
    • 6.2 组件分析
    • 6.3 相互作用分析
    • 6.4 功能建模(一)
    • 6.5 功能建模(二)
    • 6.6 创建功能模型
    • 6.7 功能分析案例
  • 7 因果链分析
    • 7.1 什么是因果链分析?
    • 7.2 缺点的种类
    • 7.3 关键缺点的解决
    • 7.4 因果链分析案例1:静电危害的消除
    • 7.5 因果链分析案例2:油漆溢出问题
  • 8 剪裁
    • 8.1 什么是剪裁?
    • 8.2 剪裁规则
    • 8.3 剪裁案例
  • 9 特性传递
    • 9.1 什么是特性传递?
    • 9.2 特性传递分析实例
  • 10 功能搜索导向
    • 10.1 什么是功能导向搜索?
    • 10.2 功能导向搜索案例
  • 11 40个发明原理
    • 11.1 发明原理概述
    • 11.2 40个发明原理:No.1-No.10
    • 11.3 40个发明原理:No.11-No.20
    • 11.4 40个发明原理:No.21-No.30
    • 11.5 40个发明原理:No.31-No.40
  • 12 技术矛盾及其解决原理
    • 12.1 什么是矛盾?
    • 12.2 什么是技术矛盾?
    • 12.3 通用工程参数
    • 12.4 矛盾矩阵
    • 12.5 运用阿奇舒勒矛盾矩阵解决技术矛盾的步骤
    • 12.6 案例分析
  • 13 物理矛盾及其解决原理
    • 13.1 什么是物理矛盾?
    • 13.2 物理矛盾的解决方法(上)
    • 13.3 物理矛盾的解决方法(下)
    • 13.4 物理矛盾和技术矛盾之间的转化
  • 14 物质-场模型与标准解系统
    • 14.1 物质-场模型
    • 14.2 标准解系统
  • 15 ARIZ算法
    • 15.1 ARIZ算法的基本概念
    • 15.2 如何使用ARIZ
  • 16 How-to模型与知识效应库
    • 16.1 How-to模型与知识效应库
    • 16.2 How-to模型与知识效应库的应用
  • 17 阅读
    • 17.1 阅读
创新方法的演化
  • 1 视频
  • 2 章节测验


其结果主要集中在4个TRIZ模式上。

1、III(Ideation International Inc)模式 

该公司主要核心研究力量是来自于前苏联KishnevTRIZ学校的专家。 他们认为TRIZ的许多方法分支太多,也过于复杂,因此必须提供一些方法和过程作为分析这些问题方法的统一入口。

根据有害和有用影响的区分,手工绘出问题中各部分因果关系网络图,利用软件工具对图中每一个节点能够自动列出问题的看法或者解决方法意见。每一个看法为使用者推荐了合适的传统TRIZ工具。III模式还开发了"创新环境调查问卷"以及预期失效判定和演变指导。III模式的主要不足是得出的看法通常是节点的3~4倍,对于复杂问题有时会显得非常冗长。

2、IMC(Inventive Machine Corp)模式

IMC公司是由前苏联人工智能和TRIZ专家Tsourilov博士移民到美国后创建的。为了解决具有技术和物理矛盾的"困难"工程问题,IMC努力将解决矛盾的创新原则、分隔原则、效果库等知识库工具集成为软件TechOptimizer。由于引入了相应的现代软件开发和人工智能技术,该软件具有容易使用与界面友好的特点。该软件分为2个集合,包括5个模块。集合1:原则模块、预测模块、效果模块;集合2:TechOptimizer模块、特征转换模块。原则模块负责从知识库给出类似的例子消除矛盾,效果模块允许从专利数据库获取类似的物理、化学和地理成果,而预测模块则是参照其演化趋势数据库中的22个演化趋势和200多个分模式对问题得出未来的解决方法。集合2个模块则负责对问题进行分析,使问题清晰化。

3、SIT/USIT模式

SIT(Systematic Inventive Thinking)模式原由移民到以色列的TRIZ专家Filkosky1980年左右创立,目的是简化TRIZ以便使其被更多人接受。1995年福特公司Sickafus博士将SIT模式进行结构化形成USIT(Unified Strctured Inventive Thinking)模式,该模式能帮助公司工程师短时间内(3天培训期)接受和掌握TRIZ,为实际问题在概念产生阶段快速地产生多种解决方法)USITTRIZ设计过程分为3 个阶段:问题定义、问题分析和概念产生,它将解决方法概念的产生简化为只有4种技术(属性维度化、对象复数化、功能分布法和功能变换法),而不需要采用知识库或计算机软件。但USIT解决问题的好坏依赖于问题解决人员知识的广度和深度。

4、RLI(Renaissanoe Leedership Instiute)模式

该模式是由RLI公司的分支机构Leonadnda Vinci研究院的一些专家开发的。RLI模式对TRIZ的贡献主要体现在:(1)针对TRIZ的复杂性,开发了8个解决问题的算法;(2)针对物质场分析工具存在的缺陷,提出运用三元代替物质场的三元分析法(Triad Analysis),并将其结合到所开发的8个发明算法中。